DOI QR코드

DOI QR Code

Weak Laws of Large Numbers for Weighted Sums of Fuzzy Random Variables

  • Hyun, Young-Nam (Ministry for Health Welfare and Family Affairs) ;
  • Kim, Yun-Kyong (Department of Information & Communication Engineering, Dongshin University) ;
  • Kim, Young-Ju (Department of Statistics, Kangwon National University) ;
  • Joo, Sang-Yeol (Department of Statistics, Kangwon National University)
  • Published : 2009.05.31

Abstract

In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of fuzzy numbers of the real line R. We first give improvements of WLLN for weighted sums of convex-compactly uniformly integrable fuzzy random variables obtained by Joo and Hyun (2005). And then, we consider the case that the averages of expectations of fuzzy random variables converges. As results, WLLN for weighted sums of convexly tight or identically distributed case is obtained.

Keywords

References

  1. Colubi, A., Dominguez-Menchero, J. S., Lopez-Diaz, M. and Gil, M. A. (1999). A generalized strong law of large numbers, Probability Theory and Related Fields, 114, 401-417 https://doi.org/10.1007/s004400050229
  2. Colubi, A., Dominguez-Menchero, J. S., Lopez-Diaz, M. and Korner, R. (2001). A method to derive strong laws of large numbers for random upper semicontinuous functions, Statistics & Probability Letters, 53, 269-275 https://doi.org/10.1016/S0167-7152(01)00057-8
  3. Feng, Y. (2002). An approach to generalize laws of large numbers for fuzzy random variables, Fuzzy Sets and Systems, 128, 237-245 https://doi.org/10.1016/S0165-0114(01)00142-7
  4. Guan, L. and Li, S. (2004). Laws of large numbers for weighted sums of fuzzy set-valued random variables, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12, 811-825 https://doi.org/10.1142/S0218488504003223
  5. Goetschel, R. and Voxman, W. (1986). Elementary fuzzy calculus, Fuzzy Sets and Systems, 18, 31-43 https://doi.org/10.1016/0165-0114(86)90026-6
  6. lnoue, H. (1991). A strong law of large numbers for fuzzy random sets, Fuzzy Sets and Systems, 41, 285-291 https://doi.org/10.1016/0165-0114(91)90132-A
  7. Joo, S. Y. (2002). Strong law of large numbers for tight fuzzy random variables, Journal of the Korean Statistical Society, 31, 129-140
  8. Joo, S. Y. (2004). Weak laws of large numbers for fuzzy random variables, Fuzzy Sets and Systems, 147, 453-464 https://doi.org/10.1016/j.fss.2004.02.005
  9. Joo, S. Y. and Hyun, Y. N. (2005). Convergence in probability for weighted sums of fuzzy random variables, The Korean Communications in Statistics, 12, 275-283 https://doi.org/10.5351/CKSS.2005.12.2.275
  10. Joo, S. Y. and Kim, Y. K. (2000). The Skorokhod topology on the space of fuzzy numbers, Fuzzy Sets and Systems, 111, 497-501 https://doi.org/10.1016/S0165-0114(98)00185-7
  11. Joo, S. Y. and Kim, Y. K. (2001). Kolmogorov's strong law of large numbers for fuzzy random variables, Fuzzy Sets and Systems, 120, 499-503 https://doi.org/10.1016/S0165-0114(99)00140-2
  12. Joo, S. Y., Kim, Y. K. and Kwon, J. S. (2006). Strong convergence for weighted sums of fuzzy random sets, Infomation Sciences, 176, 1086-1099 https://doi.org/10.1016/j.ins.2005.02.002
  13. Kim, Y. K. (2002). Measurability for fuzzy valued functions, Fuzzy Sets and Systems, 129, 105-109 https://doi.org/10.1016/S0165-0114(01)00121-X
  14. Kim, Y. K. (2004). Compactness and convexity on the space of fuzzy sets Ⅱ, Nonlinear Analysis, 57, 639-653 https://doi.org/10.1016/j.na.2004.03.005
  15. Kiement, E. P., Pun, M. L. and Ralescu, D. A. (1986). Limit theorems for fuzzy random variables, in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 407, 171-182 https://doi.org/10.1098/rspa.1986.0091
  16. Molchanov, I. (1999). On strong law of large numbers for random upper semicontinuous functions, Journal of Mathematical Analysis and Applications, 235, 349-355 https://doi.org/10.1006/jmaa.1999.6403
  17. Proske, F. N. and Puri, M. L. (2002). Strong law of large numbers for Banach space valued fuzzy random variables, Journal of Theoretical Probability, 15, 543-551 https://doi.org/10.1023/A:1014823228848
  18. Taylor, R. L., Seymour, L. and Chen, Y. (2001). Weak laws of large numbers for fuzzy random sets, Nonlinear Analysis, 47, 1245-1256 https://doi.org/10.1016/S0362-546X(01)00262-0
  19. Uemura, T. (1993). A law of large numbers for random sets, Fuzzy Sets and Systems, 59, 181-188 https://doi.org/10.1016/0165-0114(93)90197-P