• Title/Summary/Keyword: Korean geophysics

Search Result 1,231, Processing Time 0.022 seconds

Current Saturation in the Electrical Resistivity Method (전기비저항탐사에서 전류포화현상)

  • Kang, Hye-Jin;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.370-377
    • /
    • 2010
  • In this study, we investigated the current saturation which forces the apparent resistivity to converge when the conductivity contrast between the anomalous body and background medium is greater than a specific value. Analizing theoretical and numerical solutions for some simple models, we studied the behavior of the surface charge, and how the surface charge cause the current saturation and finally lead to the convergence of the apparent resistivity in the resistivity method. As a consequence of above analysis, we verified that the current saturation makes the apparent resistivity converge to a specific value and the magnitude of the apparent resistivity anomaly be less than that of the ideal conductor or insulator in the resistivity method. In general, current saturation is considered to occur when the conductivity contrast becomes larger than 100.

A Study on Slowness Time Coherence Application and its Characteristics from Sonic Log Experiment in Model Holes (모형공에서의 음파실험을 통한 STC 기법의 적용과 특성 비교)

  • Kim, Yeong-Hwa;Zhao, Weijun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.299-307
    • /
    • 2007
  • Slowness time coherence (STC) technique has been applied to 3-receiver slim hole sonic log using 3 NX sized concrete model holes of different physical properties. We analyzed the effects of different source center frequencies on the wave forms, their amplitude spectra, and their STC results. We could determine the sonic velocity of each mode accurately by the application of STC method with the semblance projection and efficient selection of center frequency. Theoretical model and experimental model hole studies indicate that 4-receiver condition is the most ideal for STC in near surface slim hole sonic log. The result also indicates that favorable STC result can be obtained from three-receiver sonic log provided with the help of the first arrival picking method.

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint (강조 모델제한을 적용한 전기비저항 모니터링 자료의 4차원 역산)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.139-149
    • /
    • 2018
  • The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.

One-dimensional Modeling of Airborne Transient Electromagnetic using a Long Grounded-wire Source (지상 송신원 항공 전자 탐사 1차원 모델링)

  • Cho, In-Ky;Kim, Rae-Yeong;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.216-222
    • /
    • 2015
  • Airborne transient electromagnetic (ATEM) surveying was introduced several decades ago in the mining industry to detect shallow conductive targets. However, conventional ATEM systems have limited depth of investigation because of weak signal strength. Recently, the grounded electrical source airborne transient electromagnetic (GREATEM) system was proposed to increase the depth of investigation. The GREATEM is a semi-airborne transient electromagnetic system because a long grounded wire is used as the transmitter. Traditionally, ATEM sounding data have been interpreted with 1D earth models to save the computing time because modern ATEM systems generally collect large data sets. However, the GREATEM 1D modeling requires numerical integration along the wire, so it takes much more time than the 1D modeling of conventional ATEM. In this study, the adaptive Born forward mapping (ABFM) was applied to the ATEM 1D modeling because the ABFM is incommensurably faster than the ordinary GREATEM 1D modeling. Comparing the results from ordinary and ABFM 1D modeling, it was confirmed that the ABFM can be applied to the 1D modeling of GEATEM.

Source Mechanism of an Explosive Eruption at White Island Volcano, New Zealand, Determined from Waveform Inversions (모멘트 텐서를 이용한 White Island 화산분화 지진원 메커니즘 분석)

  • Han, Arim;Kim, Keehoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • We studied the source mechanisms of very-long-period event recorded at seismic station WIZ near White Island Volcano, New Zealand on August 4, 2012. Since seismic data at only one station were available, we conducted moment tensor inversion using three simplified models (explosion, crack, and pipe models). To constrain the moment tensor solution of seismic event, we computed synthetic data for each model to compare with observed data. Type and orientation for the best model is a crack at a depth of 1600 m with a dip of $80^{\circ}NE$ and a strike of $N80^{\circ}W$. We interpret that a deep explosion may have opened a crack for gases to escape, and the upward gas flow triggered the surface explosions four hours later as confirmed by a webcam. The interpretation based on moment tensor inversion is consistent with previous studies of geochemical data of the volcanic island.

H/V Spectral-ratio Analysis of Microtremors in Jeju Island (제주도 상시미동의 H/V 스펙트럼비 분석)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • To study the thickness variation of volcanic rocks of Jeju Island, microtremor data were recorded at eight and four sites using short-period and broadband seismometers, respectively, for 30 ~ 60 minutes with a 100 Hz sampling rate. During the daytime, these records show increased cultural noise at frequencies above 1.8 Hz. Natural noise occurs in the frequency range of 0.4 to 0.8 Hz in both daytime and nighttime data. Predominant frequencies determined by the H/V spectral-ratio method are in the range of 0.2 ~ 0.7 Hz. These frequencies decrease gradually as the central part of the Mt. Halla is approached. This may indicate that the basement is warped downward beneath the center of the island, which is consistent with previous gravimetric and magnetic models. Assuming an average shear-wave velocity of 1,800 m/s for the overburden basalts, the depths to basement are estimated to be between 640 and 2,140 m.

Surface nuclear magnetic resonance signal contribution in conductive terrains (전도성 지질에서의 SNMR 신호 특성)

  • Hunter Don;Kepic Anton
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • To correctly invert and interpret Surface Nuclear Magnetic Resonance (SNMR) data collected in conductive terrains, an accurate estimate of subsurface conductivity structure is required. Given such an estimate, it would be useful to determine, before conducting an SNMR sounding, whether or not the conductivity structure would prevent groundwater being detected. Using SNMR forward modelling, we describe a method of determining the depth range from which most of the SNMR signal originates, given a model of subsurface conductivity structure. We use the method to estimate SNMR depth penetration in a range of halfspace models and show that for conductive halfspaces ($<10{\Omega}.m$) the depth of penetration Is less than 50 m. It is also shown that for these halfspaces, increasing coincident loop size does not significantly improve depth penetration. The results can be used with halfspace approximations of more complicated ID conductivity structures to give a reasonable estimate of the depth range over which signal is obtainable in conductive terrains.

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model (Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2021
  • The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data (시간영역 유도분극 자료로부터 Cole-Cole 변수 산출)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.

Spectral Inversion of Time-domain Induced Polarization Data (시간영역 유도분극 자료의 Cole-Cole 역산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.171-179
    • /
    • 2021
  • We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.