DOI QR코드

DOI QR Code

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model

Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산

  • Kim, Yeon-Jung (Department of Geophysics, Kangwon National University) ;
  • Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University)
  • 김연정 (강원대학교 지구물리학과) ;
  • 조인기 (강원대학교 지질, 지구물리학부)
  • Received : 2021.09.29
  • Accepted : 2021.11.17
  • Published : 2021.11.30

Abstract

The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

Cole-Cole 모델에 대한 주파수영역 유도분극 반응은 닫힌 형태의 간단한 수식으로 정의된다. 그러나 시간영역 유도분극 반응은 닫힌 형태로 표현되지 않아 Cole-Cole 모델이나 다른 완화모델에 대한 반응을 계산하는 것은 쉽지 않다. 이 논문에서는 Cole-Cole 모델에 대한 시간영역 유도분극 반응을 계산하는 세 가지 방법, 즉 급수 전개법, 선형 필터링법 및 푸리에 변환법을 비교 분석하였다. 수치 실험 결과 급수 전개법은 안정적인 결과를 제시하지 못할 뿐 아니라 수렴 속도가 느리다는 문제점이 있다. 선형 필터링법은 후기 시간에서 만족할 만한 정밀도를 보이지 못 하였다. 푸리에 변환법은 계산시간이 더 많이 걸린다는 단점이 있으나 다른 방법에 비하여 보다 안정적인 것으로 확인되었다.

Keywords

References

  1. Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals, USGS-GD-75-012, https://doi.org/10.3133/70045426
  2. Cole, K. S., and Cole, R. H., 1941, Dispersion and absorption in dielectrics: 1. Alternating current fields, J. Chem. Phys., 9, 341-351, https://doi.org/10.1063/1.1750906
  3. Dias, C., 2000, Developments in a model to describe low-frequency electrical polarization of rocks, Geophysics, 65(2), 437-451, doi:10.1190/1.1444738
  4. Guptasarma, G., 1982, Computation of the time-domain response of a polarizable ground, Geophysics, 47(11), 1574-1576, doi:10.1190/1.1441307
  5. Kemna, A., 2000, Tomographic Inversion of Complex Resistivity - Theory and Application, Der Andere Verlag, Osnabruck, Germany, https://www.geo.uni-bonn.de/mitarbeiter/AndreasKemna/dissertation
  6. Madden, T. R., and Cantwell, T., 1967, Induced polarization, a review, in Mining geophysics, v. 2. Theory, Tulsa, SEG. p. 347-400, https://doi.org/10.1190/1.9781560802716.ch2d
  7. Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43, 588-609, https://doi.org/10.1190/1.1440839
  8. Seigel, H. O., 1959, Mathematical formulation and type curves for induced polarization, Geophysics, 24, 547-565, https://doi.org/10.1190/1.1438625
  9. Tarasov, A., and Titov, K., 2013, On the use of the Cole-Cole equations in spectral induced polarization, Geophys. J. Int., 195, 352-356, https://doi.org/10.1093/gji/ggt251
  10. Van Voorhis, G. D., Nelson, P. H., and Drake, T. L., 1973, Complex resistivity spectra of porphyry copper mineralization, Geophysics, 38, 49-60, https://doi.org/10.1190/1.1440333
  11. Wait, J. R., 1984, Relaxation phenomena and induced polarization, Geoexplor., 22, 107-127, https://doi.org/10.1016/0016-7142(84)90032-2