DOI QR코드

DOI QR Code

Source Mechanism of an Explosive Eruption at White Island Volcano, New Zealand, Determined from Waveform Inversions

모멘트 텐서를 이용한 White Island 화산분화 지진원 메커니즘 분석

  • Han, Arim (Department of Geophysics, Kangwon National University) ;
  • Kim, Keehoon (Department of Geological Sciences, University of North Carolina) ;
  • Kim, Ki Young (Department of Geophysics, Kangwon National University)
  • Received : 2013.12.28
  • Accepted : 2014.04.14
  • Published : 2014.05.31

Abstract

We studied the source mechanisms of very-long-period event recorded at seismic station WIZ near White Island Volcano, New Zealand on August 4, 2012. Since seismic data at only one station were available, we conducted moment tensor inversion using three simplified models (explosion, crack, and pipe models). To constrain the moment tensor solution of seismic event, we computed synthetic data for each model to compare with observed data. Type and orientation for the best model is a crack at a depth of 1600 m with a dip of $80^{\circ}NE$ and a strike of $N80^{\circ}W$. We interpret that a deep explosion may have opened a crack for gases to escape, and the upward gas flow triggered the surface explosions four hours later as confirmed by a webcam. The interpretation based on moment tensor inversion is consistent with previous studies of geochemical data of the volcanic island.

2012년 8월 4일 뉴질랜드 White Island 화산의 WIZ 관측소에서 기록된 화산성 장주기 지진파의 지진원 메커니즘에 대해 연구하였다. 하나의 관측소 자료만을 이용하였기 때문에 단순한 기하학적 모델(구, 균열, 파이프)들을 이용하여 모멘트 텐서 역산을 실시하였다. 각 모델의 합성자료를 계산하였으며, 이를 관측자료와 비교하였다. 가장 잘 일치하는 모델의 종류와 방향은 깊이 1600 m의 경사가 $80^{\circ}NE$이고 주향이 $N80^{\circ}W$인 균열 모델이었다. 깊은 곳에서의 폭발은 가스분출을 위한 균열을 열었으며, 상승한 가스가 약 4시간 후에 감시카메라에 포착된 지표 분화를 야기하였을 것으로 해석된다. 모멘트 텐서방법에 기초한 이러한 분석 결과는 이 화산섬을 대상으로 수행한 기존의 지화학 연구 결과와 일치한다.

Keywords

References

  1. Aster, R., Zandomeneghi, D., Mah, S., McNamara, S., Henderson, D., Knox, H., and Jones, K., 2008, Moment tensor inversion of very long period seismic signals from Strombolian eruptions of Erebus Volcano, Journal of Volcanology and Geothermal Research, 177, 635-647. https://doi.org/10.1016/j.jvolgeores.2008.08.013
  2. Auger, E., D'Auria, L., Martini, N., Chouet, B., and Dawson, P., 2006, Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy, Geophysical Research Letters, 33, doi: 10.1029/2005GL024703.
  3. Bean, C., Lokmer I., and O'Brien, G., 2008, Influence of near-surface volcanic structure on long-period seismic signals and on moment tensor inversions: Simulated examples from Mount Etna, Journal of Geophysical Research: Solid Earth, 113, doi:10.1029/2007/JB005468.
  4. Chouet, B., 1996, Long-period volcano seismicity: its sources and use in eruption forecasting, Nature, 380, 309-316. https://doi.org/10.1038/380309a0
  5. Chouet, B., and Dawson, P., 2012, Shallow conduit system at Kiauea Volcano, Hawaii, revealed by seismic signals associated with degassing bursts, Journal of Geophysical Research, 116, doi:10.1029/2011JB008677.
  6. Chouet, B., Dawson, P. B., James, M. R., and Lane, S. J., 2010, Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10-50 s band, Journal of Geophysical Research, 115, B09311.
  7. Chouet, B., Dawson, P., Ohminato, T., Martini, M., Saccorotti, G., Giudicepietro, F., De Luca, G., Milana, G., and Scarpa, R., 2003, Source mechanisms of explosions at Stromboli volcano, Italy, determined from moment-tensor inversion of very-long-period data, Journal of Geophysical Research, 115, doi:10.1029/2002JB001919.
  8. Cole, J. W., and Lewis, K. B., 1981, Evolution of the Taupo-Hikurangi subduction system, Tectonophysics, 72, 1-21. https://doi.org/10.1016/0040-1951(81)90084-6
  9. Cole, J. W., and Nairn, I. A., 1975, Catalogue of the active volcanoes of the world including Solfatara fields. Part 22: New Zealand, International Association of Volcanology and Chemistry of the Earth's Interior.
  10. Cole, J. W., Thordarson, T., and Burt, R. M., 2000, Magma origin and evolution of White Island (Whakaari) volcano, Bay of plenty, New Zealand, Journal of Petrology, 41, 867-895. https://doi.org/10.1093/petrology/41.6.867
  11. Cunningham, W. D., and Mann, P., 2007, Tectonics of Strike-Slip Restraining and Releasing Bends, in Mouslopoulou V., Nicol, A., Little, T. A., and Walsh, J. J., Terminations of large strike-slip faults: an alternative model from New Zealand, Geological Society, London, 387-415.
  12. Davi, R., O'Brien, G. S., Lokmer, I., Bean, C. J., Lesage, P., and Mora, M. M., 2010, Moment tensor inversion of explosive long period events recorded on Arenal volcano, Costa Rica, constrained by synthetic tests, Journal of Volcanology and Geothermal Research, 194, 189-200. https://doi.org/10.1016/j.jvolgeores.2010.05.012
  13. Dawson, P. B., Chouet, B. A., and Power, J., 2011, Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska, Geophysical Research Letters, 38, doi: 10.1029/2010GL045977.
  14. GeoNet, 2013, New Zealand hazard monitoring network, New Zealand, http://geonet.org.nz/ (December, 21, 2013 Accessed).
  15. Giggenbach, W. F., Hedenquist, J. W., Houghton, B. F., Otway, P. M., and Allis, R. G., 1989, Research drilling into the volcanic hydrothermal system on White Island, New Zealand, EOS, 70, 98-108. https://doi.org/10.1029/89EO00057
  16. Han A., Park, I., and Kim, K. Y., 2013, Volcano monitoring using earthquakes, Korean society of earth and exploration geophysicsts, 16, 268-274. https://doi.org/10.7582/GGE.2013.16.4.268
  17. Haney, M. M., Chouet, B., Daswon, P. B., and Power, J. A., 2013, Sorce characterization for an explosion during the 2009 eruption of Redoubt Volcano from very-long period seismic waves, Journal of Volcanology and Geothermal Research, 259, 77-88. https://doi.org/10.1016/j.jvolgeores.2012.04.018
  18. Houghton, B. F., and Nairn, I. A., 1989, A model for the 1976-82 phreatomagmatic and Strombolian eruption sequence at White Island volcano, New Zealand, New Zealand Geological Survey Bulletin, 103, 127-136.
  19. Jeon, Y. M., 2009, Lithofacies and emplacement processes of the volcanic rocks in the Cretaceous Gyeongsang basin and Quaternary Jeju Island, Korea, Ph.D. Thesis, Gyeongsang National University, 165p.
  20. Jolly, A. D., Sherburn, S., Jousset, P., and Kilgour, G., 2010, Eruption source processes derived from seismic and acoustic observations of the 25 september 2007 Ruapehu eruption-North Island, New Zealand, Journal of Volcanology and Geothermal Research, 191, 33-45. https://doi.org/10.1016/j.jvolgeores.2010.01.009
  21. Jost, M. L., and Herrmann, R. B., 1989, A Student's Gruide to and Review of Moment Tensors, Seismological Research Letters, 60, 37-57.
  22. Jousset, P., Budi-Santoso, A., Jolly, A. D., Boichu, M., Surono, D. S., Sumarti, S., Hidayati, S., and Thierry, P., 2013, Signs of magma ascent in lp and vlp seismic events and link to degassing: An example from the 2010 explosive eruption at Merapi volcano, Indonesia, 2013, Journal of Volcanology and Geothermal Research, 261, 171-192. https://doi.org/10.1016/j.jvolgeores.2013.03.014
  23. Kim, G. B., and Sohn, Y. K., 2012, Holocene explosive eruptions of Ulleung Island, a potentially active volcano and a source of marine tephra in the East Sea, 4th International Maar Conference, IAVCEI Abstract, 119-120.
  24. Kim, J.-K., 2011, Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motion from Recent Earthquake near the Backryoung Island, Geophysics and Geophysical Exploration, 14, 274-281.
  25. Kim, K., 2013, Source Mechanism of Volcanic Explosions Investigated by Seismo-Acoustic Observations, Ph. D. thesis, North Carolina University, Chapel Hill, 101p.
  26. Kumagai, H., Placios, P., Ruiz, M., Yepes, H., and Kozono, T., 2011, Ascending seismic source during an explosive eruption at Tungurahua Volcano, Ecuador, Geophysical Research Letters, 38, L01306.
  27. Lamarche, G., Barnes, P. M., and Bull, M. J., 2006, Faulting and extension rate over the last 20,000 years in the offshore Whakatane Graben, New Zealand continental shelf, Tectonics, 25, doi:10.1029/2005TC001886.
  28. Lokmer I., Bean, C. J., Saccorotti, G., and Patane D., 2007, Moment-tensor inversion of LP events recorded on Etna in 2004 using constraints obtained from wave simulation tests, Geophysical Research Letters, 34, doi: 10.1029/2007GL031902.
  29. Mordret, A., Jolly, A. D., Duputel, Z., and Fournier, N., 2010, Monitoring of phreatic eruption using Interferometry on Retrieved Cross-Correlation Function from Ambient Seismic Noise: Results from Mt. Ruapehu, New Zealand, Journal of Volcanology and Geothermal Research, 191, 46-59. https://doi.org/10.1016/j.jvolgeores.2010.01.010
  30. Murase, T., and McBirney, A., 1973, Properties of some common igneous rocks and their melts at high temperatures, Geological Society of America Bulletin, 84, 3563-3592. https://doi.org/10.1130/0016-7606(1973)84<3563:POSCIR>2.0.CO;2
  31. Nakano, M., 2005, Waveform inversion of volcano-seismic signals assuming possible source geometries, Geophysical Research Letters, 32, L12302. https://doi.org/10.1029/2005GL022666
  32. Nishi, Y., Sherburn, S., Scott, B. J., and Sugihara, M., 1996, High-frequency earthquakes at White Island volcano, New Zealand: insights into the shallow structure of a volcano-hydrothermal system, Journal of Volcanology and Geothermal Research, 72, 183-197. https://doi.org/10.1016/0377-0273(96)00005-4
  33. Ohminato, T., 2006, Characteristics and source modeling of broadband seismic signals associated with the hydrothermal system at Satsuma-Iwojima Volcano, Japan, Journal of Volcanology and Geothermal Research, 158, 467-490. https://doi.org/10.1016/j.jvolgeores.2006.08.004
  34. Ohminato, T., Chouet, B., Dawon, P., and Kedar, S., 1998, Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii, Journal of Geophysical Research, 103, 23,839-23,862. https://doi.org/10.1029/98JB01122
  35. Pondrelli, S., Salimbeni, S., Perfetti, P., and Danecek, P., 2012, Quick regional centroid moment tensor solutions for the Emilia 2012 (northern Italy) seismic sequence, Annals of Geophysics, 55, 615-621.
  36. Savage, M. K., Lin, F-.C., and Townend, J., 2013, Ambient noise cross-correlation observations of fundamental and higher-mode Rayleigh wave propagation governed by basement resonance, Geophysical Research Letters, 40, 1-6. https://doi.org/10.1029/2012GL054022
  37. Scarpa, R., and Tilling, R., 1996, Monitoring and Mitigation of Volcno Hazards, in Chouet, B. (ed.), New methods and future trends in seismological volcano monitoring, Springer-Verlga, New York, 23-97.
  38. Scott, B., and Rosenberg, M., 2007, Geological Society of New Zealand & New Zealand Geophysical Society Joint Annual Conference Tauranga 2007, GNS Science, Wairakei Research Centre.
  39. Sherburn, S., Scott, B. J., Nishi, Y., and Sugihara, M., 1998, Seismicity at White Island volcano, New Zealand: a revised classification and inference about source mechanism. Journal of Volcanology and Geothermal Research, 83, 278-312.
  40. Szakacs, A., 1994, Redefining active volcanoes: a discussion. Bulletin of Volcanology, 56, 321-325. https://doi.org/10.1007/BF00326458
  41. Wei, H., Liu, G., and Gill, J., 2013, Reveiw of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implication for possible future eruptions, Bulletin of volcanology, 75, doi:10.1007/s0445-013-0706-5.
  42. Wright, I. C., 1990, Late Quaternary faulting of the offshore Whakatane Graben, Taupo Volcanic Zone, New Zealand, New Zealand Journal of Geology and Geophysics, 33, 245-256. https://doi.org/10.1080/00288306.1990.10425682
  43. Yoshida, Y., Ueno, H., Muto, D., and Aoki, S., 2011, Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data, Earth Planets Space, 63, 565-569. https://doi.org/10.5047/eps.2011.05.011
  44. Zhao, D., and Tian, Y., 2013, Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link?, Geophysical Journal International, 195, 706-724. https://doi.org/10.1093/gji/ggt289

Cited by

  1. Shear Wave Velocity Structure Beneath White Island Volcano, New Zealand, from Receiver Function Inversion and H-κ Stacking Methods vol.17, pp.2, 2014, https://doi.org/10.7582/GGE.2014.17.2.066