• Title/Summary/Keyword: Korean film

Search Result 21,678, Processing Time 0.047 seconds

A Study on the Chemical State in the ONO Superthin Film by Second Derivative Auger Spectra (2차 미분 Auger 스펙트럼을 이용한 ONO 초박막의 결합상태에 관한 연구)

  • 이상은;윤성필;김선주;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.778-783
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPROM was investigated by TEM, AES and AFM. Seocnd derivative spectra of Auger Si LVV overlapping peak provide useful information fot chemical state analysis of superthin film. The ONO film with dimension of tunnel oxide 23$\AA$, nitride 33$\AA$, and blocking oxide 40$\AA$ was fabricated. During deposition of the LPCVD nitride film on tunnel oxide, this thin oxide was nitrized. When the blocking oxide was deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of $SiO_2$ (blocking oxide)/O-rich SiON(interface)/N-rich SiON(nitride)/ O-rich SiON(tunnel oxide)

  • PDF

Determination of Thin Film Thickness by EDS Analysis and its Modeling (EDS 분석과 모델링에 의한 박막두께 측정 방법에 관한 연구)

  • Yun, Jae-Jin;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.647-653
    • /
    • 2011
  • In this study, a method to measure the thickness of thin film by EDS (energy dispersive spectroscopy) is suggested. We have developed a model which calculates the thickness of thin film from the characteristic x-ray intensity ratio of the elements in thin film and substrate by considering incident electron beam energy, x-ray generation curve, backscattering and absorption of x-ray, take-off angle of x-ray and tilt angle of the sample. We obtained the relation curve between the film thickness measured experimentally and the x-ray intensity ratio of elements. The film thicknesses calculated from the model agrees quite well with those measured experimentally. Therefore, the thin film thickness can be measured rapidly and accurately by using the model developed in this study and the x-ray intensity ratio obtained in EDS analysis.

Characteristics of $\pi$-type attenuators using Ti(N) thin film resistors

  • Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.50-50
    • /
    • 2007
  • We report the effect of the film thickness on electrical properties of Ti(N) film resistors. The applications of titanium nitride thin film resistor in $\Pi$-type attenuators are also characterized. As film thickness decreases from 100 to 30 nm, temperature coefficient of resistance significantly decreases from -60 to -148 ppm/K, while sheet resistance increases from 37 to $270\;{\Omega}/{\square}$. The characterizations of 20dB-attenuators using thin film resistors are improved in comparison with those using thick film resistors. The $\Pi$-type attenuators using Ti(N) thin film resistors exhibit a attenuation of -19.94 dB and voltage standing wave ratio of 1.16 at a frequency of 2.7 GHz.

  • PDF

Characterization of low-k dielectric SiOCH film deposited by PECVD for interlayer dielectric (PEDCVD로 증착된 ILD용 저유전 상수 SiOCH 필름의 특성)

  • Choi, Yong-Ho;Kim, Jee-Gyun;Lee, Heon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.144-147
    • /
    • 2003
  • Cu+ ions drift diffusion in formal oxide film and SiOCH film for interlayer dielectric is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 0.2MV/cm and temperature $200^{\circ}C,\;300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$ for 10min, 30min, 60min. The Cu+ ions drift rate of $SiOCH(k=2.85{\pm}0.03)$ film is considerable lower than termal oxide. As a result of the experiment, SiOCH film is higher than Thermal oxide film for Cu+ drift diffusion resistance. The important conclusion is that SiOCH film will solve a causing reliability problems aganist Cu+ drift diffuion in dielectric materials.

  • PDF

Microstructure, Electrical Property and Nonstoichiometry of Light Enhanced Plating(LEP) Ferrite Film

  • 김 돈;이충섭;김영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.533-539
    • /
    • 1998
  • A magnetic film was deposited on a slide glass substrate from aqueous solutions of $FeCl_2$ and $NaNO_2$ at 363 K. XRD analysis showed that the film was polycrystalline magnetite $(Fe_{3(1-{\sigma})}O_4)$ without impurity phase. The lattice constant was 0.8390 nm. Mossbauer spectrum of the film could be deconvoluted by the following parameters: isomer shifts for tetrahedral $(T_d)$ and octahedral $(O_h)$ sites are 0.28 and 0.68 mm/s, respectively, and corresponding magnetic hyperfine fields are 490 and 458 kOe, respectively. The estimated chemical formula of the film by the peak intensity of Mossbauer spectrum was $Fe_{2.95}O_4$. Low temperature transition of the magnetite (Verwey transition) was not detected in resistivity measurement of the film. Properties of the film were discussed with those of pressed pellet and single crystal of synthetic magnetites. On the surface of the film, magnetite particles of about 0.2 μm in diameter were identified by noncontact atomic force microscopy (NAFM) and magnetic force microscopy (MFM).

Effect of Working Pressure Conditions during Sputtering on the Electrical Performance in Te Thin-Film Transistors (RF Sputtering 공정 법을 이용해 증착한 Te 기반 박막 및 박막 트랜지스터의 공정 변수에 따른 전기적 특성 평가)

  • Lee, Kyu Ri;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.190-193
    • /
    • 2022
  • In this work, the effect of sputtering working pressure for the tellurium film and its thin-film transistor was investigated. The transfer characteristics of tellurium thin-film transistors were improved by increasing the working pressure during sputtering process. As increasing working pressure, physical and optical properties of Te films such as crystallinity, transmittance, and surface roughness were improved. Therefore, the improved transfer characteristics of Te thin-film transistors may originate from both improved interface properties between the silicon oxide gate dielectric layer and the tellurium active layer with an improved quality of Te film. In conclusion, the control of working pressure during sputtering would be important for obtaining high-performance tellurium-based thin film transistor

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF

Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering (스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성)

  • Eun, Sang-Won;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

Magnetic Properties of Co-Cr(-Ta)/Si Bilayered Thin Film (Co-Cr(-Ta)/Si 이층막의 자기적 특성)

  • 김용진;박원효;금민종;최형욱;김경환;손인환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.281-286
    • /
    • 2002
  • In odder to investigate the magnetic properties of CoCr-based bilayered thin films on kind of underlayer, we introduced amorphous Si layer to Co-Cr(-Ta) magnetic layer as underlayer. First, we prepared CoCr and CoCrTa single layer using the Facing Targets Sputtering system to investigate theirs properties. It was revealed that with increasing the film thickness of CoCr, CoCrTa single layer, crystalline orientation and perpendicular coercivity was improved. The CoCrTa thin film showed bettor crystalline and magnetic characteristics than CoCr thin film. As a result of investigating magnetic properties of CoCr and CoCrTa magnetic layer on introducing the Si underlayer, perpendicular coercivity and saturation magnetization of CoCr/Si and CoCrTa/Si bilayered thin film were decreased due to the increased grain size and diffusion of Si atoms to magnetic layer. And they showed constant with increasing the film thickness of Si thin film. However, in case of CoCrTa/Si bilayered thin film, in-plane coercivity was controlled low at about 250Oe. The c-axis orientations of CoCr/si and CoCrTa/Si bilayered thin film showed a good crystalline characteristics as about $2^{\circ}$.