DOI QR코드

DOI QR Code

Effect of Working Pressure Conditions during Sputtering on the Electrical Performance in Te Thin-Film Transistors

RF Sputtering 공정 법을 이용해 증착한 Te 기반 박막 및 박막 트랜지스터의 공정 변수에 따른 전기적 특성 평가

  • Lee, Kyu Ri (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 이규리 (충남대학교 신소재공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Received : 2021.09.24
  • Accepted : 2021.11.24
  • Published : 2022.03.01

Abstract

In this work, the effect of sputtering working pressure for the tellurium film and its thin-film transistor was investigated. The transfer characteristics of tellurium thin-film transistors were improved by increasing the working pressure during sputtering process. As increasing working pressure, physical and optical properties of Te films such as crystallinity, transmittance, and surface roughness were improved. Therefore, the improved transfer characteristics of Te thin-film transistors may originate from both improved interface properties between the silicon oxide gate dielectric layer and the tellurium active layer with an improved quality of Te film. In conclusion, the control of working pressure during sputtering would be important for obtaining high-performance tellurium-based thin film transistor

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas, and H. N. Alshareef, Adv. Mater., 28, 3831 (2016). [DOI: https://doi.org/10.1002/adma.201503080]
  2. B. Kumar, B. K. Kaushik, and Y. S. Negi, Polym Rev, 54, 33 (2014). [DOI: https://doi.org/10.1080/15583724.2013.848455]
  3. U. Zschieschang and H. Klauk, J. Mater. Chem. C, 7, 5522 (2019). [DOI: https://doi.org/10.1039/C9TC00793H]
  4. H. Matsui, Y. Takeda, and S. Tokito, Org. Electron, 75, 105432 (2019). [DOI: https://doi.org/10.1016/j.orgel.2019.105432]
  5. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  6. H. Hosono, J Non Cryst Solids, 352, 851 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2006.01.073]
  7. J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012). [DOI: https://doi.org/10.1016/j.tsf.2011.07.018]
  8. G. Zhou, R. Addou, Q. Wang, S. Honari, C. R. Cormier, L. Cheng, R. Yue, C. M. Smyth, A. Laturia, J. Kim, W. G. Vandenberghe, M. J. Kim, R. M. Wallace, and C. L. Hinkle, Adv. Mater., 30, 1803109 (2018). [DOI: https://doi.org/10.1002/adma.201803109]
  9. C. Zhao, C. Tan, D. H. Lien, X. Song, M. Amani, M. Hettick, H. Y. Y. Nyein, Z. Yuan, L. Li, M. C. Scott, and A. Javey, Nat. Nanotechnol., 15, 53 (2020). [DOI: https://doi.org/10.1038/s41565-019-0585-9]
  10. M. Naqi, K. H. Choi, H. Yoo, S. Chae, B. J. Kim, S. Oh, J. Jeon, C. Wang, N. Liu, S. Kim, and J. Y. Choi, NPG Asia Mater., 13, 46 (2021). [DOI: https://doi.org/10.1038/s41427-021-00314-y]
  11. M. Mayilmurugan, S. Kaipannan, M. Sathish, and S. Dhanuskodi RSC Adv., 10, 13632 (2020). [DOI: https://doi.org/10.1039/C9RA08692G]
  12. H. D. Kim, J. H. Kim, K. Park, J. H. Kim, J. Park, Y. J. Kim, and H. S. Kim, ACS Appl. Mater. Interfaces, 9, 24688 (2017). [DOI: https://doi.org/10.1021/acsami.7b03385]
  13. F. H. Chen, M. N. Hung, J. F. Yang, S. Y. Kuo, J. L. Her, Y. H. Matsuda, and T. M. Pan, J Phys Chem Solids, 74, 570 (2013). [DOI: https://doi.org/10.1016/j.jpcs.2012.12.006]
  14. D. G. Yang, H. D. Kim, J. H. Kim, S. W. Lee, J. Park, Y. J. Kim, and H. S. Kim, Thin Solid Films, 638, 361 (2017). [DOI : https://doi.org/10.1016/j.tsf.2017.08.008]