• 제목/요약/키워드: Kinetic Object

검색결과 52건 처리시간 0.023초

Experimental study on motions of VLCO for wave power generation (2. Multiple floating bodies) (파력발전용 가변수주진동장치의 운동에 대한 실험적 연구 (2. 다수 부유체))

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.27-31
    • /
    • 2013
  • The structure of a variable liquid column oscillator(VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system for absorbing the high kinetic energy of the accelerated motions of multiple floating bodies using an air-spring effect produced the installation of inner air chambers. Thus, a VLCO can improve the energy efficiency of the activating object type of wave energy converters made by the Pelamis Company. In this research, an experiment was performed in two cases: with the top valves closed and open. The floating bodies were connected by hinges. The effect of the internal flow was estimated by comparing the results for the closed and open valves.

Catalytic Incineration Kinetics of Gaseous MEK and Toluene (MEK와 톨루엔의 촉매연소 속도특성)

  • 이재동
    • Journal of environmental and Sanitary engineering
    • /
    • 제14권2호
    • /
    • pp.113-119
    • /
    • 1999
  • In this study, the incineration of MEK and toluene was studied on a Pt supported alumina catalyst at temperature range from 200 to $350^{\circ}C$. An approach based on the Mars-van Krevelen rate model was used to explain the results. The object of this study was to study the kinetic behavior of the platinum catalyst for deep oxidation. The conversions of MEK and toluene were increased as the inlet concentration was decreased and the reaction temperature was increased. The maximum deep conversion of MEK and toluene were 91.81% and 55.69% at $350^{\circ}C$, respectively. The ${\kappa}_3$ constant increases with temperature faster than the ${\kappa}_1$ constant, that is, the surface concentration of ($VOCs{\cdots}O$) is higher than that of (O) at higher temperature according to the Mars-van Krevelen mechanism. Also the activation energy of toluene was larger than MEK for toluene is aromatic compound which have stronger bonding energy.Therefore, the catalytic incineration kinetics of MEK and toluene with Mars-van Krevelen mechanism could be used as the basic data for industrial processes.

  • PDF

An Experimental Study on the Cushion Characteristics of Hydraulic Cylinder (유압 실린더의 쿠션특성에 관한 실험적 연구)

  • Lee, Sang-Gi;Kim, Dong-Su;Kim, Hyeong-Ui
    • 기계와재료
    • /
    • 제11권2호통권40호
    • /
    • pp.53-61
    • /
    • 1999
  • The paper describes a characteristics analysis for cushion pressure and cushion stroke time at hydraulic cushioning cylinder. In hydraulic cushioning cylinder, an inertia exaggerates a kinetic energy at a reciprocation that collide with an end of stroke and generate a destructive shock, noise and vibration within the structural and operating member of machine of equipment. In order to reduce which cause to undesirable noise, vibration and fatigue in hydraulic control system, it is indispensible measure a cushion parameters at cushion region of hydraulic cushioning cylinder. A cushioning device is applied to absorb high impact energy and to decelerate a fast travelling object, too. At an experimental results, it turns out that cushion pressure is mainly a function of the external load and cylinder input flowrate rather than the supply pressure.

  • PDF

Vibration Analysis of Tapered Thick Plates on Position of Concentated Mass (집중질량 위치변화에 따른 변단면 후판의 진동해석)

  • Oh Soog-Kyoung;Lee Yong-Soo;Kim Il-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.681-688
    • /
    • 2006
  • This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on pasternak foundation. the Winkler parameter is varied with 10, $10^2,\;10^3$ and the shear foundation parameter is 5, 10. This paper is analyzed varying thickness by taper ratio. The taper ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0 respectively.

  • PDF

Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress on Pasternak Foundation (Pasternak지반 위에 놓인 면내력을 받는 변단면 후판의 진동해석)

  • Cheong, Jin-Taek;Lee, Yong-Soo;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제15권4호
    • /
    • pp.388-394
    • /
    • 2005
  • This paper has the object of investigating natural frequencies of tapered thick plate on Pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Vibration analysis for tapered thick plate subjected to in-plane stress is presented in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. Analysis conditions of tapered thick plate are as follows each. The ratio of in-plane stress to critical load is varied with $0.2\sigma_{cr}$, $0.4\sigma_{cr}$, $0.6\sigma_{cr}$. The Winkler parameter is 0, 10, 100, 1000, the shear foundation parameter is 0, 10 and the taper ratio is 0.0, 0.2, 0.4, 0.6, 0.8.

A Study on the Automatic Design of 4D Printing to Follow the Target Shape (목표 형상을 추종하는 4D 프린팅 자동 설계에 관한 연구)

  • Ham, Sungil;Lee, Yong-Gu
    • Korean Journal of Computational Design and Engineering
    • /
    • 제21권3호
    • /
    • pp.306-312
    • /
    • 2016
  • In general, the shape of a 3D printed object is not to be changed after the generation. Most changes, for example, contraction of a molten polymer after cooling is thought to be undesirable. 4D printing however tries to make benefit of a shape change after the part is generated. The shape change is required to be controllable in response to an external stimuli. These artifacts from 4D printing are called kinetic components which are defined as structures formed by combining inert materials and smart materials that change under certain stimuli. We propose a design software that can systematically calculate inert links with smart joints to follow the shape of the target design.

Rural areas, Vibration Stability Analysis of Wall and Retaining Wall of Low-rise Masonry Buildings (농촌지역 저층 조적조 건축물의 벽체 및 옹벽의 진동 안정 해석 - 전북 정읍시 ◯◯면 농촌지역 사례를 중심으로 -)

  • Lee, Deog-Yong;Kim, Il-Jung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • 제16권4호
    • /
    • pp.59-66
    • /
    • 2014
  • This paper deals with vibration of plates with concentrated mass on elastic foundation. The object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on pasternak foundation. The Winkler parameter is varied with 10, $10^2$, $10^3$ and the shear foundation parameter is 5, 10. This paper is analyzed varying thickness by taper ratio. The taper ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0. And the Concentrated Mass is applied as P1, Pc, P2 respectively.

Free Vibration Analysis of Tapered Opening Thick Plate (개구부를 갖는 변단면 후판의 자유진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.907-910
    • /
    • 2005
  • This paper has the object of investigating natural frequencies of tapered thick plate, tapered ratio, thick plate's opening size by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is varioued of plate thickness. the thickness is varied with 5, 10, 15, 20 and the tapered ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0 respectively. This paper is analyzed varying thickness by taper ratio.

  • PDF

Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress (면내력을 받는 변단면 후판의 진동해석)

  • Cheong, Jin-Taek;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.521-525
    • /
    • 2004
  • This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. vibration analysis that tapered thick plate subjected to In-plane stress is presented in this paper Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis tapered plate which is supported on pasternak foundation. The ratio of In-plane stress to critical load is varied with $0.2\sigma_{cr},\;0.4\sigma_{cr},\;0.6\sigma_{cr}$, and the Winkler parameter is 0, 10, 100, 1000 the shear foundation parameter 0, 10. The taper ratio is applied as 0.0, 0.2, 0.4, 0.6, 0.8 respectively. This paper is analyzed varying thickness by taper ratio with In-plane stress.

  • PDF

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF