• Title/Summary/Keyword: KS aggregate

Search Result 115, Processing Time 0.028 seconds

Effect of Poor Quality Aggregates on the Properties of High Strength Concrete (품질불량 골재가 고강도 콘크리트의 공학적 특성에 미치는 영향)

  • Lee, Sun-Jae;Song, Yuan-Lou;Lee, Hong-Kyu;Lee, Myeoung-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.113-114
    • /
    • 2015
  • This paper is to investigate the effect of poor quality aggregate source used in Korea on the mixture proportion and strength development of the high strength concrete fixed at 450 kg/m3 of cement contents. For aggregate kinds, good quality crushed stone from KS certified manufacturer and low quality crushed stone from non certified construction field are used. For fine aggregates, river sand, land sand, sea sand and mixed sand are also used. It is found that the use of low quality aggregates resulted in an increase of water demand considerably due to poor gradation of aggregate and excessive fine particles. Test results indicate that the use of low quality aggregate also decreases the compressive strength compared with that of good quality aggregate.

  • PDF

Study on the Physical Properties of the Artificial Lightweight Aggregate Recycled from the Dyestuff Sludge Treated Chemically With Ti and Fe Salt (Ti염 및 Fe염으로 화학처리된 염색공단 슬러지를 재활용한 인공경량골재의 물리적 특성에 관한 연구)

  • Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • The paper investigates environmental hazards and characteristics of the artificial lightweight aggregate manufactured by using dyestuff sludge from dyeing industrial complex. The dyestuff sludge used in this study is chemically treated with Ti and Fe salt for the purpose of recycling. The artificial lightweight aggregate is manufactured through 3 step; 1) Selecting the optimum moisture content by evaluating plasticity from the mixing ratio of the clay and sludge, 2) shaping round type based on the optimum mixing ratio, 3) drying and Sintering process. Based on KS F 2534 "Lightweight Aggregate for Structural concrete", the particle size, fineness modulus, the density, absorption, unit volume weight, stability and environmental hazards of the manufactured lightweight aggregate are evaluated. Experimental results show that the particle size and fineness modulus is out of the range. However, it is observed that other physical properties are within criteria. In addition, it is confirmed that the problem of the particle size and fineness modulus could be solved in the manufacturing process.

Development of Recycled Aggregate Producing Circuit Using Autogenous mill (Autogenous mill을 이용(利用)한 순환골재(順換骨材) 생산(生産) 공정(工程) 개발(開發))

  • Kim, Kwan-Ho;Lee, Duck-Jae;Cho, Hee-Chan;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.25-30
    • /
    • 2007
  • In Korea, reutilization of construction waste is gaining attention as construction waste generated increases continuously. Currently, the concrete waste is simply crushed and used as a low value application such as paving, back filling, etc. To meet the demand of aggregate for construction and the resource efficiently, production of high quality recycled aggregate is necessary. Therefore, in this study, a better process for production of high quality recycled aggregate was developed using combination of heat pretreatment and autogenous milling. Test results showed that the recycled aggregate has a density of $2.5\;g/cm^3$ and a water absorption ratio of 3.0%, which meet the specification of the first class of KS F 2573. Currently, a pilot scale autogenous mill is being constructed and tests will be further conducted to develop a commerce-scale process.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

The Mechanical Properties of SMA Concrete Mixture Using Steel Slag Aggregate (제철 슬래그 골재를 이용한 SMA 혼합물의 역학적 특성)

  • Kim, Hyeok-Jung;Na, Il-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2021
  • In order to replace mineral aggregate used as road pavement materials with steel slag aggregate, this present study evaluated mechanical properties of SMA Concrete mixtures using steel slag aggregate as oxidized slag from electric furnace in iron works. The variables of this experiment are the aggregate type of mineral and steel slag and the sieve sized of 10mm and 13mm. The physical properties inclu ding the specific gravity and absorption rate etc. of the slag aggregate mixtu res satisfied the KS standard as asphalt mixtu re. As a resu lt of evalu ating the mechanical properties of the asphalt mixtures, the optimum asphalt content of the slag aggregate mixtures were lower than that of the mineral aggregate mixtures, but other quality standards were all satisfied. In the deformation strength evaluation, the slag aggregate mixtures were measu red slightly higher than that of the mineral aggregate mixtu res, and the dynamic stability test satisfied the 2,000pass/mm standard value in all specimens. And, the moduli of resilient of the slag aggregate mixtures showed an improved value compared with the mineral aggregate mixtures. Therefore, as the resilient rate of the slag aggregate mixtures improved, it is speculated that there will be an effect of improving public performance according to the repeated traffic load of the vehicle.

A Fundamental Study on Manufacturing Condition the High Quality Recycled Fine Aggregate by Low Speed Wet Rotary Mill (저속습식마쇄기를 이용한 고품질 순환잔골재 제조에 관한 기초적 연구)

  • Kim, Ha-Seog;Lee, Gyung-Hyun;Ra, Jeong-Min;Park, Hyo-Jin;Lim, Dae-Bin;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.65-68
    • /
    • 2009
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because the technic to remove old mortar from aggregate is low level. To use the recycled aggregate as high quality grade, it is important to develop the technic to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should remove efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume when, adequate condition of sulfuric mole ratio and aggregate ratio are make.

  • PDF

Quality Evaluation of Basalt Aggregates from JEJU Island (제주산 현무암의 콘크리트용 골재 사용을 위한 품질 특성 평가)

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.449-456
    • /
    • 2013
  • This study was carried out to assess the suitability in terms of the standards of material quality of basalt aggregates from JEJU Island as a source for concrete aggregate. Quality assessments on the basalt aggregates were performed to assess the soundness of coarse aggregates using sodium sulfate solution, aggregate crushing test, and Los Angeles abrasion test. In addition, XRD, XRF, porosity, and compressive and tensile strength tests were performed to analyze the chemical components and the mechanical properties. In general, the mechanical properties of basalt aggregates from some areas did not meet the Korea Standards (KS), but the levels of compressive and tensile strength were higher than those of granite, andesite, and sandstone of other regions.

Properties of Quality & Mortar Application of Crushed Sand According to the Producing Type (생산 방식에 따른 부순 모래의 특성 및 모르타르 적용성)

  • Baek Chul Woo;Park Cho Bum;Kim Jung Sik;Ryu Deuk Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.443-446
    • /
    • 2005
  • Recently, according to increase use of concrete which is the main material of construction, the natural aggregate of good quality is more and more decreased. Most of all, among the concrete materials, the development of alternation materials of sand is urgently needed. In this study, investigating the production equipment and the sample of crushed sand company and analyzing properties of sand, manufactured mortar by the KS to use crushed sand as the fine aggregate of concrete material. The experiment result is as follows. 1. The density, an absorptivity, and the amount of 0.08mm passage ratio of crushed sand, and the mortar used crushed sand satisfied KS. The mechanical results is similar to sea sand. 2. The crushed sand which used impact crusher instead of cone crusher for 3rd or 4th crusher was similar properties to sea sand, so it is judged that impact crusher has high effect of particle shape improvement of crushed sand.

  • PDF

Performance Evaluation of Polymer Cementitious Interior Finish Using Light-Weight Aggregates Containing Pyroligneous Liquid (목초액 담지체를 골재로 사용한 폴리머 시멘트계 내장마감재의 성능평가)

  • Lee, Chae-Young;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.218-219
    • /
    • 2014
  • The purpose of this study is to develop eco-friendly internal material of acrylic emulsion mortars using light-weight aggregate carrier which contains pyroligneous liquid. Four types of light-weight aggregates (vermiculite, perlite, charcoal, zeolite) that are widely used in building materials are selected and the properties such as adhesion, water absorption coefficient, antibiosis, crack and impact resistance are evaluated in accordance with KS F 4715. As a result, the properties of acrylic emulsion mortars using light-weight aggregate carrier are satisfied with KS requirements. The antibiosis is improved with increasing zeolite light-weight carrier content.

  • PDF

An Investigation of AAR Distress in the Plain Concrete Pavement (알칼리-골재 반응에 의한 무근콘크리트 포장의 파손 고찰)

  • 홍승호;한승환;안성순;장태순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.98-101
    • /
    • 2003
  • The Alkali-Aggregate Reaction (AAR) may cause a serious failure in the concrete structures. Several researchers in some nations have performed the continuous studies to prevent failure of a concrete structures by the AAR distress as well as the studies to manifest the mechanism. The ASTM Standards to prevent failure by potential AAR aggregates were established in 1950. The KS F2545 and KS F 2546 were established to test the susceptibility of aggregate to potential AAR in 1982. But the researches on the AAR have not been performed affluently in Korea because the distress due to AAR has seldom been reported officially. In this study, the Chemical Method and Scanning Electron Microscopy (SEM) were used to verifying the cause of the pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to AAR, and the chemical method and SEM may be the effective tools for verifying the cause of AAR distresses.

  • PDF