• 제목/요약/키워드: Invariant Manifold

검색결과 125건 처리시간 0.024초

CRITICAL VIRTUAL MANIFOLDS AND PERVERSE SHEAVES

  • Kiem, Young-Hoon;Li, Jun
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.623-669
    • /
    • 2018
  • In Donaldson-Thomas theory, moduli spaces are locally the critical locus of a holomorphic function defined on a complex manifold. In this paper, we develop a theory of critical virtual manifolds which are the gluing of critical loci of holomorphic functions. We show that a critical virtual manifold X admits a natural semi-perfect obstruction theory and a virtual fundamental class $[X]^{vir}$ whose degree $DT(X)=deg[X]^{vir}$ is the Euler characteristic ${\chi}_{\nu}$(X) weighted by the Behrend function ${\nu}$. We prove that when the critical virtual manifold is orientable, the local perverse sheaves of vanishing cycles glue to a perverse sheaf P whose hypercohomology has Euler characteristic equal to the Donaldson-Thomas type invariant DT(X). In the companion paper, we proved that a moduli space X of simple sheaves on a Calabi-Yau 3-fold Y is a critical virtual manifold whose perverse sheaf categorifies the Donaldson-Thomas invariant of Y and also gives us a mathematical theory of Gopakumar-Vafa invariants.

ON SEMI-INVARIANT SUBMANIFOLDS OF LORENTZIAN ALMOST PARACONTACT MANIFOLDS

  • Tripathi, Mukut-Mani
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2001
  • Semi-invariant submanifolds of Lorentzian almost paracontact mani-folds are studied. Integrability of certain distributions on the submanifold are in vestigated. It has been proved that a LP-Sasakian manifold does not admit a proper semi-invariant submanifold.

  • PDF

Conformally invariant tensors on hermitian manifolds

  • Matsuo, Koji
    • 대한수학회보
    • /
    • 제33권3호
    • /
    • pp.455-463
    • /
    • 1996
  • In [3] and [4], Kitahara, Pak and the author obtained the conformally invariant tensor $B_0$, which is an algebraic Hermitian analogue of the Weyl conformal curvature tensor W in the Riemannian geometry, by the decomposition of the curvature tensor H of the Hermitian connection and the notion of semi-curvature-like tensors of Tanno (see[7]). In [5], the author defined a conformally invariant tensor $B_0$ on a Hermitian manifold as a modification of $B_0$. Moreover he introduced the notion of local conformal Hermitian-flatness of Hermitian manifolds and proved that the vanishing of this tensor $B_0$ together with some condition for the scalar curvatures is a necessary and sufficient condition for a Hermitian manifold to be locally conformally Hermitian-flat.

  • PDF

REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS

  • Cho, Jong Taek
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1249-1257
    • /
    • 2016
  • We prove that the Ricci operator S of an almost cosymplectic three-manifold M is invariant along the Reeb flow, that is, M satisfies ${\pounds}_{\xi}S=0$ if and only if M is either cosymplectic or locally isometric to the group E(1, 1) of rigid motions of Minkowski 2-space with a left invariant almost cosymplectic structure.

CONFORMAL HEMI-SLANT SUBMERSION FROM KENMOTSU MANIFOLD

  • Mohammad Shuaib;Tanveer Fatima
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.248-268
    • /
    • 2023
  • As a generalization of conformal semi-invariant submersion, conformal slant submersion and conformal semi-slant submersion, in this paper we study conformal hemi-slant submersion from Kenmotsu manifold onto a Riemannian manifold. The necessary and sufficient conditions for the integrability and totally geodesicness of distributions are discussed. Moreover, we have obtained sufficient condition for a conformal hemi-slant submersion to be a homothetic map. The condition for a total manifold of the submersion to be twisted product is studied, followed by other decomposition theorems.

CLAIRAUT ANTI-INVARIANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

  • Tastan, Hakan Mete;Aydin, Sibel Gerdan
    • 호남수학학술지
    • /
    • 제41권4호
    • /
    • pp.707-724
    • /
    • 2019
  • We investigate the new Clairaut conditions for anti-invariant submersions whose total manifolds are cosymplectic. In particular, we prove the fibers of a proper Clairaut Lagrangian submersion admitting horizontal Reeb vector field are one dimensional and classify such submersions. We also check the existence of the proper Clairaut anti-invariant submersions in the case of the Reeb vector field is vertical. Moreover, illustrative examples for both trivial and proper Clairaut anti-invariant submersions are given.