DOI QR코드

DOI QR Code

REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS

  • Cho, Jong Taek (Department of Mathematics Chonnam National University)
  • Received : 2015.08.13
  • Published : 2016.07.31

Abstract

We prove that the Ricci operator S of an almost cosymplectic three-manifold M is invariant along the Reeb flow, that is, M satisfies ${\pounds}_{\xi}S=0$ if and only if M is either cosymplectic or locally isometric to the group E(1, 1) of rigid motions of Minkowski 2-space with a left invariant almost cosymplectic structure.

Keywords

References

  1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  2. D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q{\phi}\;=\;{\phi}Q$. II, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 379-383.
  3. J. T. Cho, Contact 3-manifolds with the Reeb flow symmetry, Tohoku Math. J. (2) 66 (2014), no. 4, 491-500. https://doi.org/10.2748/tmj/1432229193
  4. J. T. Cho and J. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), no. 5, 913-932. https://doi.org/10.4134/JKMS.2005.42.5.913
  5. J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273. https://doi.org/10.1016/j.difgeo.2014.05.002
  6. R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Simon Stevin 44 (1992), no. 1, 1-34.
  7. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. https://doi.org/10.2140/pjm.1969.31.373
  8. T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841-846. https://doi.org/10.1007/s10114-004-0520-2
  9. J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), no. 3, 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
  10. Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. https://doi.org/10.2996/kmj/1138036371
  11. Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50. https://doi.org/10.4064/ap-47-1-41-50
  12. Z. Olszak, Almost cosymplectic manifolds with Kahlerian leaves, Tensor N. S. 46 (1987), 117-124.
  13. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
  14. D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58. https://doi.org/10.1016/j.difgeo.2011.10.003

Cited by

  1. Semi-symmetric almost coKähler 3-manifolds pp.1793-6977, 2018, https://doi.org/10.1142/S0219887818500317
  2. Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator vol.6, pp.11, 2018, https://doi.org/10.3390/math6110246