References
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
-
D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with
$Q{\phi}\;=\;{\phi}Q$ . II, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 379-383. - J. T. Cho, Contact 3-manifolds with the Reeb flow symmetry, Tohoku Math. J. (2) 66 (2014), no. 4, 491-500. https://doi.org/10.2748/tmj/1432229193
- J. T. Cho and J. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), no. 5, 913-932. https://doi.org/10.4134/JKMS.2005.42.5.913
- J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273. https://doi.org/10.1016/j.difgeo.2014.05.002
- R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Simon Stevin 44 (1992), no. 1, 1-34.
- S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. https://doi.org/10.2140/pjm.1969.31.373
- T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841-846. https://doi.org/10.1007/s10114-004-0520-2
- J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), no. 3, 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
- Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. https://doi.org/10.2996/kmj/1138036371
- Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50. https://doi.org/10.4064/ap-47-1-41-50
- Z. Olszak, Almost cosymplectic manifolds with Kahlerian leaves, Tensor N. S. 46 (1987), 117-124.
- Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
- D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58. https://doi.org/10.1016/j.difgeo.2011.10.003
Cited by
- Semi-symmetric almost coKähler 3-manifolds pp.1793-6977, 2018, https://doi.org/10.1142/S0219887818500317
- Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator vol.6, pp.11, 2018, https://doi.org/10.3390/math6110246