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CONFORMAL HEMI-SLANT SUBMERSION FROM

KENMOTSU MANIFOLD

Mohammad Shuaib and Tanveer Fatima∗

Abstract. As a generalization of conformal semi-invariant submersion,
conformal slant submersion and conformal semi-slant submersion, in this

paper we study conformal hemi-slant submersion from Kenmotsu man-

ifold onto a Riemannian manifold. The necessary and sufficient condi-
tions for the integrability and totally geodesicness of distributions are

discussed. Moreover, we have obtained sufficient condition for a confor-

mal hemi-slant submersion to be a homothetic map. The condition for a
total manifold of the submersion to be twisted product is studied, followed

by other decomposition theorems.

1. Introduction

Riemannian submersions between Riemannian manifolds were studied by O’
Neill and Gray ([11], [20]). After this kind of submersions were studied be-
tween manifolds endowed with differentiable structure, many authors studied
different geometric properties of the Riemannian submersion, anti-invariant
submersion ([31], [33]), semi-invariant submersion ([2], [32]), slant submersion
([8], [9], [12], [21]), semi-slant submersion ([13], [22], [23]), conformal slant sub-
mersion ([3], [14]) and conformal semi-slant submersion [1]. A step forward,
R Parsad et. al. studied Quasi-bi-slant submersions, hemi-slant submersions,
conformal semi-invariant submersions, conformal semi-slant submersions and
conformal anti-invariant submersions for almost contact metric manifolds and
almost Hermitian manifolds ([25], [26], [27], [28], [29], [30]). On the other hand,
Riemannian submersions have some applications in physics and in mathemat-
ics. More precisely, Riemannian submersions have applications in Kaluza-Klein
theory ([7], [15]) and Yang-Mills theory ([6], [35]).

As a generalization of anti-invariant, semi-invariant and slant submersion,
Tastan et al. defined the notion of hemi-slant Riemannian submersion in [34].
As special, horizontally conformal maps which were introduced independently
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by Fuglede [10] and Ishihara [16], horizontally conformal submersions are de-
fined as follows: Let (M1, g1) and (M2, g2) are Riemannian manifolds of dimen-
sion m1 and m2 respectively. A smooth submersion π : (M1, g1) → (M2, g2)
is called a horizontally conformal submersion if there is a positive function λ
such that

λ2g1(X1, X2) = g2(π∗X1, π∗X2)

for all X1, X2 ∈ Γ(kerπ∗). Here, a horizontally conformal submersion π is
called horizontally homothetic if the gradλ is vertical, i.e., H(gradλ) = 0. We
denote by V and H the projections on the vertical distributions (kerπ∗) and
horizontal distributions ((kerπ∗)

⊥). It can be said that Riemannian submersion
is a special horizontally conformal submersion with λ = 1. Recently, Akyol
and Sahin have introduced conformal anti-invariant submersions [4], conformal
semi-invariant submersion [5], conformal slant submersion [3], and conformal
semi-slant submersions [1]. Also, the geometry of conformal submersions have
been studied by several authors ([14], [19]). Our motivation is to fill a gap
in the geometry of conformal hemi-slant Riemannian submersions in contact
geometry.

Our motivation is to further study the conformal hemi-slant submersions
in contact geometry, specifically we study conformal hemi-slant submersions
from Kenmotsu manifold onto a Riemannian manifold. The organization of
the presented article is as follows: Section 2 is provided with pre-requisite of
almost contact metric manifold and it also enriches the article with the basic
fact of Riemannian and horizontally conformal submersions, which makes it
self contained. In Section 3, we have discussed the geometry of the foliations
whereas Section 4 focusses on the product theorems for the total manifold of
the submersion.

2. Preliminaries

Let M be a (2n+1)-dimensional almost contact manifold with almost con-
tact structures (ϕ, ξ, η), where ϕ is a (1, 1) tensor field ξ, a vector field and η,
a 1- form satisfying

(1) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0.

On an almost contact manifold, there exists a Riemannian metric g which is
compatible with the almost contact structure (M,ϕ, ξ, η) in the sense that

(2) g(ϕU, ϕV ) = g(U, V )− η(U)η(V ),

from which it can be observed that

(3) g(U, ξ) = η(U),

for any U, V ∈ Γ(TM) and the manifold (M,ϕ, ξ, η, g) is called an almost
contact metric manifold. If [ϕ, ϕ] denotes the Nijenhuis tensor of ϕ, then the
almost contact structure is normal if and only if the torsion tensor [ϕ, ϕ] +
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2dη ⊗ ξ vanishes. An almost contact metric structure is called a contact
metric structure if dη = Φ, where Φ is the fundamental 2-form defined by
Φ(U, V ) = g(U, ϕV ). Almost contact metric structure (ϕ, ξ, η, g) are said to
define a Kenmotsu structure on M if the following characterizing tensorial
equation is satisfied (cf.[17])

(4) (∇̄Uϕ)V = g(ϕU, V )ξ − η(V )ϕU.

One can deduce from the above relations that

(5) ∇̄Uξ = U − η(U)ξ.

It is also seen that

(6) g(ϕU, V ) = −g(U, ϕV ).

The covariant derivative is defined by

(7) (∇Uϕ)V = ∇UϕV − ϕ∇UV.

Now, we recall the notion of Riemannian submersion and horizontally con-
formal submersion followed by some basic results those will be useful through-
out the text.

Definition 2.1. Let (M, g1) and (N, g2) be two Riemannian manifolds
and π : M → N be a smooth Riemannian submersion. Then π is called a
horizontally conformal submersion, if there is a positive function λ such that

(8) g1(X,Y ) =
1

λ2
g2(π∗X,π∗Y ),

for any X,Y ∈ Γ(kerπ∗)
⊥. It is obvious that every Riemannian submersion is

a particularly horizontally conformal submersion with λ = 1.

Let π : M → N be a conformal submersion. A vector field E on M is
called projectable if there exists a vector field Ē on N such that π∗(Ep) = Ē
for any p ∈M . In this case E and Ē are called π-related. A horizontal vector
field Y on M is called basic, if it is projectable. It is a well known fact that if
Z̄ is a vector field on N, then there exists a unique basic vector field Z which
is called the horizontal lift of Z̄ [20].

The fundamental tensors T and A defined by O Neill for vector field E and
F on M such that

(9) AEF = H∇HEVF + V∇HEHF

(10) TEF = H∇VEVF + V∇VEHF
where V and H are the vertical and horizontal projections. On the other hand,
from equations (9) and (10), we have

(11) ∇UV = TUV + ∇̄UV

(12) ∇UX = TUX +H∇UX
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(13) ∇XU = AXU + V∇XU

(14) ∇XY = H∇XY +AXY

for any U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ∗)
⊥, where ∇̄UV = V∇UV .

It is easily seen that for p ∈ Γ(TM), V ∈ Vp, X ∈ Hp the linear operators
TV ,AX : TpM → TpM are skew-symmetric, that is

(15) g(AXE,F ) = −g(E,AXF )

(16) g(TV E,F ) = −g(E, TV F )
for any E,F ∈ Γ(TpM). We also see that the restriction of T to the vertical
distribution acts as a second fundamental form of the fibres of the submersion
π. Since TV is skew-symmetric, hence, π has totally geodesic fibres if and only
if T ≡ 0.

Definition 2.2. A horizontally conformal submersion π :M → N is called
horizontally homothetic if the gradient of its dilation λ is vertical, i.e.,

(17) H(gradλ) = 0

at p ∈ Γ(TM), where H is the complement orthogonal distribution to ν =
kerπ∗ in Γ(TpM).

Let (M, g1) and (N, g2) be two Riemannian manifolds. Let φ :M → N be
a smooth map. Then, the second fundamental form of φ is given by

(18) (∇φ∗)(X,Y ) = ∇φ
Xφ∗Y − φ∗(∇XY ),

for all X,Y ∈ Γ(TpM), where we denote conveniently by ∇ the Levi-Civita
connection of the metrics g1 and g2 and ∇φ is the pullback connection. We
also know that φ is said to be totally geodesic map if (∇φ∗)(X,Y ) = 0 for any
X,Y ∈ Γ(TpM).

Lemma 2.3. Let π :M → N be a horizontal conformal submersion. Then,
for any horizontal vector fields X,Y and vertical vector fields U, V

(i) (∇π∗)(X,Y ) = X(lnλ)π∗(Y ) + Y (lnλ)π∗(X)− g1(X,Y )π∗(grad lnλ),
(ii) (∇π∗)(U, V ) = −π∗(TUV ),
(iii) (∇π∗)(X,U) = −π∗(∇XU) = −π∗(AXU).

3. Conformal Hemi-slant Submersion

A horizontal conformal submersion π :M → N from almost contact metric
manifold (M,ϕ, ξ, η, g1) onto a Riemannian manifold (N, g2), is called a con-
formal hemi-slant submersion if the vertical distribution kerπ∗ of π admits two
orthogonal complementary distributions D and D̄ such that D is slant with
angle θ and D̄ is anti-invariant, i.e.,

(19) kerπ∗ = D ⊕ D̄⊕ < ξ >
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where < ξ > is 1-dimensional distribution spanned by ξ and angle θ is called
the hemi-slant angle of submersion. It is known that the distribution kerπ∗
is integrable. Hence, above definition implies that the integral manifold (no
matter fibers π−1(n), n ∈ N) of kerπ∗ is a hemi-slant submanifold.

We observe that the notion of conformal hemi-slant submersion is natural
generalization of the notions of conformal anti-invariant [4], conformal semi-
invariant submersion [5] and conformal slant submersion [3]. More precisely,
if we denote the dimension of D̄ and D by m1 and m2, respectively, then we
have the following:

1. If m2 = 0, then M is a conformal anti-invariant submersion,
2. If m1 = 0 and θ = 0, then M is a conformal invariant submersion.
3. If m1 = 0 and θ ̸= 0=, then M is a proper conformal slant submersion

with slant angle θ.
4. If θ = π

2 , then M is a conformal anti-invariant submersion.

We say that the conformal hemi-slant submersion is proper if D̄ ̸= 0
and θ ̸= 0, π2 . Let π be a conformal hemi-slant submersion from a Kenmotsu
manifold (M,ϕ, ξ, η, g1) onto a Riemannian manifold (N, g2). Then, for any
V ∈ Γ(kerπ∗), we have

(20) V = PV +QV + η(V )ξ

PV ∈ Γ(D), QV ∈ Γ(D̄). For all X ∈ Γ(kerπ∗)
⊥

(21) ϕX = BX + CX

where BX ∈ Γ(kerπ∗) and CX ∈ Γ(µ). For V ∈ Γ(kerπ∗), we have

(22) ϕV = ψV + ωV

where ψV ∈ Γ(kerπ∗), ωV ∈ Γ(kerπ∗)
⊥. Then the horizontal distribution

Γ(kerπ∗)
⊥ decomposed as

(23) Γ(kerπ∗)
⊥ = ωD ⊕ ϕD̄ ⊕ µ

where µ is the orthogonal complement of ωD ⊕ ϕD̄ in Γ(kerπ∗)
⊥.

Theorem 3.1. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
Riemannian submersion. Then

(24) ψ2 = −λ(I − η ⊗ ξ).

Furthermore, if π is Riemannian submersion then it satisfies λ = cos2 θ.

Proof. Let π be a hemi-slant Riemannian submersion from almost contact
metric manifold (M,ϕ, ξ, η, g1) into a Riemannian manifold (N, g2) with the
hemi-slant angle θ. Then for any U ∈ Γ(kerπ∗), we have

(25) cos θ =
|ψU |
|ϕU |
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cos θ =
g1(ϕU, ψU)

|ϕU ||ψU |
.

On using equation (22), we have

(26) cos θ = −g1(U,ψ
2U)

|ϕU ||ψU |
.

On using equations (1), (25) and (26), we get

ψ2U = − cos2 θ(U − η(U)ξ).

Here λ = cos2 θ, then finally, we have

(27) ψ2 = −λ(I − η ⊗ ξ).

The proof of above Theorem is similar to the proof of the Theorem (3.5) of
[26].

Lemma 3.2. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
Riemannian submersion. Then we have

(28) g1(ψU,ψV ) = cos2 θ{g1(U, V )− η(U)η(V )}

(29) g1(ωU, ωV ) = sin2 θ{g1(U, V )− η(U)η(V )}

U, V ∈ Γ(Kerπ∗).

Proof. On using equation (22), we have

g1(ψU,ψV ) = g1(ϕU, ψV ).

Again from equation (22) and using above Theorem, we get

g1(ψU,ψV ) = cos2 θ{g1(U, V )− η(U)η(V )}.

With using equations (22), we have

g1(ωU, ωV ) = g1(ϕU, ϕV )− g1(ϕU, ψV ).

On using equations (22) and (28), we have

g1(ωU, ωV ) = sin2 θ{g1(U, V )− η(U)η(V )}.

Lemma 3.3. Let (M,ϕ, ξ, η, g1) be Kenmotsu manifold and (N, g2) be a
Riemannian manifold. If π : M → N is a conformal hemi slant submersion,
then we have

ωBX + C2X = −X, ψBX +BCX = 0

ψ2U +BωU = −U + η(U)ξ, ωψU + CωU = 0

for U ∈ Γ(kerπ∗) and X ∈ Γ((kerπ∗)
⊥).
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Lemma 3.4. Let (M,ϕ, ξ, η, g1) be Kenmotsu manifold and (N, g2) be a
Riemannian manifold. If π : M → N is a conformal hemi slant submersion,
then we have

(i)

AXBY +H∇XCY = ψH∇XY +BAXY − g1(X,Y )ξ

V∇XBY +AXCY = ωH∇XY + CAXY.

(ii)

V∇XψV +AXωV +BAXV = ωV∇XV + g1(BX,V )− η(V )BX

AXψV +H∇XωV + CAXV = ωV∇XV + η(CX).

(iii)

V∇VBX +∇V CX = BTVBX + ψ∇V CX − g1(ωV,X)

TVBX + TV CX = CTV CX + ω∇V CX.

(iv)

V∇V ψU +∇UωV + η(V )ψU = BTUV + ψV∇UV + g1(ψU, V )ξ

TUψV + TUωV = CTUV + ωV∇UV + η(V )ωU.

for U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ((kerπ*)
⊥)

Theorem 3.5. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
submersion from a Kenmotsu manifold onto a Riemannian manifold N . Then
slant distribution D is integrable if and only if

1

λ2
g2{(∇π∗)(U, ωV )− (∇π∗)(V, ωU), π∗(ϕX)}

= g1(TUωψV,Z)− g1(TV ωψU,Z)
− 2η(Z) cos2 θ{g1(U, V )− η(U)η(V )}

for any U, V ∈ Γ(D), X ∈ Γ(kerπ∗)
⊥ and Z ∈ Γ(D̄)

Proof. Taking g([U, V ], Z) and g([U, V ], X), since g1([U, V ], X) = 0 as X ∈
Γ(kerπ∗)

⊥ and U, V ∈ Γ(D). Now, using (2) - (6), (21) and Theorem 3.1, we
have

g1([U, V ], Z) = cos2θg1([U, V ], Z)− g1(∇UωψV,Z) + g1(∇V ωψU,Z)

− g1(∇UωV, ϕZ) + g1(∇V ωU, ϕZ)

Now using equation (12), we have

sin2θg1([U, V ], Z)

= −g1(TUωψV,Z) + g1(TV ωψU,Z)− g1(H∇̄UωV, ϕZ)

+ g1(H∇V ωU, ϕZ) + 2η(Z) cos2 θ{g1(U, V )− η(U)η(V )}
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Considering definition of Conformal submersion from Lemma (2.3), we have

sin2θg1([U, V ], Z)

= −g1(TUωψV,Z) + g1(TV ωψU,Z)−
1

λ2
g2((∇π∗)(U, ωV ), π∗(ϕZ))

− 1

λ2
g2(∇π

Uπ∗ωU, π∗(ϕZ))−
1

λ2
g2((∇π∗)(V, ωU), π∗(ϕZ))

+
1

λ2
g2(∇π

V π∗ωU, π∗(ϕZ)) + 2η(Z) cos2 θ{g1(U, V )− η(U)η(V )}.

Finally, we get

sin2θg1([U, V ], Z)

= −g1(TUωψV,Z) + g1(TV ωψU,Z) +
1

λ2
{g2(∇π∗)(U, ωV )

− (∇π∗)(V, ωU), π∗(ϕZ)}+ 2η(Z) cos2 θ{g1(U, V )− η(U)η(V )}.

(30)

From above equation, we get the result.

Theorem 3.6. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be a conformal hemi-
slant submersion from a Kenmotsu manifold to Riemannian manifold N . Then
anti-invariant distribution D̄ is always integrable.

Theorem 3.7. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be a conformal hemi slant
submersion from a Kenmotsu manifold onto a Riemannian manifold N . Then
(kerπ∗)

⊥ is integrable if and only if

1

λ2
g2(∇π

Xπ∗CY +∇π
Y π∗CX, π∗(ωV ))

= g1(Hgrad lnλ,X)g1(X,ωV )

+ g1(Hgrad lnλ,CX)g1(Y, ωY )

− 2g1(X,CY )g1(Hgrad lnλ, ωV )

− g1(V∇XBY + V∇YBX +AY CX +AXCY,ψV )

− g1(AYBX −AXBY, ωV ),

(31)

for any U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ((kerπ∗)
⊥).

Proof. Taking U, V ∈ Γ(kerπ∗) and X,Y ∈ Γ((kerπ∗)
⊥) with using (2),

(4) and (22), we have

g1([X,Y ], V ) = −g1(∇XBY, ϕV )− g1(∇XCY, ϕV )

+ g1(∇YBX,ϕV ) + g1(∇Y CX,ϕV ).
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On using equations(13), (14), (21) and Lemma 2.3, we have

g1([X,Y ], V ) = −g1(AXBY + V∇XBY, ϕV )− g1(H∇XCY +AXCY, ϕV )

+ g1(AYBX + V∇YBX,ϕV ) + g1(H∇Y CX +AY CX,ϕV )

= g1(V∇XBY + V∇YBX +AY CX −AXCY,ψV ) + g1(AYBX

−AXBY, ωV ) +
1

λ2
g2(π∗(−H∇XCY +H∇Y CX), π∗(ωV )).

Since π is conformal hemi-slant submersion, using Lemma 2.3 and equation
(18), we get

g1([X,Y ], V ) =
1

λ2
g2(∇π

Xπ∗CY +∇π
Y π∗CX, π∗(ωV ))

− g1(Hgrad lnλ,X)g1(X,ωV )

− g1(Hgrad lnλ,CX)g1(Y, ωY )

+ 2g1(X,CY )g1(Hgrad lnλ, ωV )

− g1(V∇XBY + V∇YBX +AY CX +AXCY,ψV )

− g1(AYBX −AXBY, ωV ).

From the above equation, we get the desired result.

Theorem 3.8. Let π is conformal hemi-slant submersion from a Kenmotsu
manifold (M̄, ϕ, ξ, η, g1) onto a Riemannian manifold (N, g2). If (kerπ∗)

⊥ is
integrable and the equation

1

λ2
g2(∇π

Xπ∗CY +∇π
Y π∗CX, π∗(ωV ))

= −g1(V∇XBY + V∇YBX +AY CX +AXCY,ψV )

− g1(AYBX −AXBY, ωV ),

(32)

for X,Y ∈ Γ(kerπ∗)
⊥ and V,W ∈ Γ(kerπ∗) holds, then π is horizontally

homothetic.

Proof. For X,Y ∈ Γ(kerπ∗)
⊥ and V,W ∈ Γ(kerπ∗), from Theorem 3.7, we

have

g1([X,Y ], V )

=
1

λ2
g2(∇π

Xπ∗CY +∇π
Y π∗CX, π∗(ωV ))

− g1(Hgrad lnλ,X)g1(X,ωV )

− g1(Hgrad lnλ,CX)g1(Y, ωY )

+ 2g1(X,CY )g1(Hgrad lnλ, ωV )

− g1(V∇XBY + V∇YBX +AY CX +AXCY,ψV )

− g1(AYBX −AXBY, ωV )
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Now, If (kerπ∗)
⊥ is integrable and equation (32) holds, we have

− g1(Hgrad lnλ,CY )g1(X,ωV )

− g1(Hgrad lnλ,CX)g1(Y, ωV )

+ 2g1(X,CY )g1(Hgrad lnλ, ωV ) = 0.

Now taking X = ϕV in above equation and using the fact g1(ϕV,CY ) = 0, for
Y ∈ Γ(kerπ∗)

⊥, V ∈ Γ(kerπ∗). we have

−g1(Hgrad lnλ,CY )g1(ϕV, ϕV ) = 0.

Here λ is constant on Γ(µ). On the other hand taking X = CY , we arrived at

2g1(CY,CY )g1(Hgrad lnλ, ωV ) = 0.

From above equation, λ is a constant on Γ(ϕ(kerπ∗)). Similarly, one can obtain
the other assertions.

Theorem 3.9. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
submersion from a Kenmotsu manifold M to Riemannian manifold N . Then
slant distribution D defines totally geodesic foliation on M if and only if

(33) g1(TZωψW,X) = − 1

λ2
g2((∇π∗)(Z, ωW ), π∗(ϕX)),

and

1

λ2
[g2((∇π∗)(ωW,ϕCV ), π∗(ωZ))− g2(∇ωWπ∗(ϕCV ), π∗(ωZ))]

= g1(TZωW , BV ) + g1(AωWϕCV,ψZ)− g1(∇ZωψW,V )
(34)

for any Z,W ∈ Γ(D), V ∈ Γ(kerπ∗)
⊥ and X ∈ Γ(D̄).

Proof. Taking Z,W ∈ Γ(D), V ∈ (kerπ∗)
⊥ and X ∈ Γ(D̄) with using

equations (2), (4), (21) and Theorem 3.1, we have

g1(∇ZW,X)

= cos2θg1(∇ZW,X)− g1(∇ZωψW,X) + g1(∇ZωW,ϕX).

Now, from equations (8) and (12), we have

sin2θg1(∇ZW,X)

= −g1(H∇ZωψW,X)− g1(TXZωψW,X) + g1(H∇ZωW,ϕX) + g1(TZωW,ϕX)

= −g1(TZωψW,X)− 1

λ2
g2((∇π∗)(Z, ωW ), π∗(ϕX)).

On the other hand by using (2), (4), (21) and Theorem 3.1, we have

g1(∇ZW,V ) = cos2θg1(∇ZW,V )− g1(∇ZωψW,V )

+ g1(TZωW +H∇ZωW,BV + CV ).
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We have on using equations (2), (4), (8), (14) and (21)

sin2θg1(∇ZW,V )

= −g1(∇ZωψW,V ) + g1(TZωW,BV + g1(H∇ZωW,CV )

= −g1(∇ZωψW,V ) + g1(TZωW,BV )− g1(AωWϕCV, ωZ)

− 1

λ2
g2(∇ωWπ∗(ϕCV ), π∗(ωZ)) +

1

λ2
g2((∇π∗)(ωW,ϕCV ), π∗(ωZ)).

This complete the proof of the theorem.

Theorem 3.10. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
submersion from a Kenmotsu manifold M onto a Riemannian manifold N .
Then (kerπ∗)

⊥ is defined totally geodesic on M if and only if

− 1

λ2
g2(∇π

Xπ∗Y, π∗(ωψPV ))− 1

λ2
g2(∇π

Xπ∗CY, π∗(ωV ))

= −cos2θg1(∇XY, PV ) + g1(AXBY, ωV )

− g1(X, grad lnλ)g1(Y, ωψPV )

+ g1(Y, grad lnλ)g1(X,ωψPV )

− g1(X,Y )g1(grad lnλ, ωψPV )

+ g1(CY, grad lnλ)g1(X,ωV )

− g1(X,CY )g1(grad lnλ, ωV )

for any X,Y ∈ Γ(kerπ∗)
⊥ and V ∈ Γ(kerπ∗).

Proof. On Using equations (2), (20) and (21) with takingX,Y ∈ Γ(kerπ∗)
⊥

and V ∈ Γ(kerπ∗), we have

g1(∇XY, V )

= g1(∇Xϕ
2Y, ψ2PV ) + g1(∇Xϕ

2Y, ωψPV )

+ g1(∇XϕY, ωPV ) + g1(∇XϕY, ϕQV ).

From (1), (14) and Theorem 3.1, we have

g1(∇XY, V ) == −cos2θg1(∇XY, PV )− g1(H∇XY, ωψPV )

+ g1(∇XBY, ωV ) + g1(∇XCY, ωV )

as ωPV +ϕQV = ωV . From equations (8), (13), (18) and Lemma 2.3, we have

g1(∇XY, V )

= −cos2θg1(∇XY, PV ) + g1(AXBY, ωV ) +
1

λ2
g2(∇π

Xπ∗Y, π∗(ωψPV ))

− g1(X, grad lnλ)g1(Y, ωψPV ) + g1(Y, grad lnλ)g1(X,ωψPV )

− g1(X,Y )g1(grad lnλ, ωψPV ) +
1

λ2
g2(∇π

Xπ∗CY, π∗(ωV ))

+ g1(CY, grad lnλ)g1(X,ωV )− g1(X,CY )g1(grad lnλ, ωV ).
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This proves the theorem completely.

Theorem 3.11. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
submersion from a Kenmotsu manifold M onto a Riemannian manifold N .
Then (kerπ∗) defines totally geodesic on M if and only if

− cos2θg1(∇UPV,X)− g1(TUωV,BX)

=
1

λ2
g2(∇π

ωV π∗ϕCX, π∗(ωV ))

− 1

λ2
g2(∇π

Uπ∗ωψPV, π∗(X))

− 1

λ2
g2((∇π∗)(U, ωψPV ), π∗(X))

− 1

λ2
g2((∇π∗)(ωV, ϕCX), π∗(ωV ))

+ g1(AωV ϕCX, ϕU) + η(QV )g1(U,BX)

(35)

for any X ∈ Γ(kerπ∗)
⊥ and U, V ∈ Γ(kerπ∗).

Proof. On taking X ∈ Γ(kerπ∗)
⊥ and U, V ∈ Γ(kerπ∗) with using decom-

position (20), equations (2), (4), (21) and Theorem 3.1 we have

g1(∇UV,X) = g1(∇UPV,X) + g1(∇UQV,X) + η(V )g1(∇Uξ,X)

= g1(ϕ∇UPV, ϕX) + g1(ϕ∇UQV, ϕX)

= cos2θg1(∇UPV,X)− g1(∇ωψPV,X)

+ g1(∇UωPV, ϕX) + g1(∇UϕQV, ϕX).

On using equations (12), (14) and (22), we have

g1(∇UV,X)

= cos2θg1(∇UPV,X)− g1(H∇UωψPV,X) + g1(TUωV,BX)

+ g1(H∇ωV ϕCX,ωU) + g1(AωV ϕCX, ϕU) + η(QV )g1(U,BX).

Furthermore. using equation (8) and (18), we have

g1(∇UV,X)

= cos2θg1(∇UPV,X) + g1(TUωV,BX) +
1

λ2
g2(∇π

ωV π∗ϕCX, π∗(ωV ))

− 1

λ2
g2(∇π

Uπ∗(ωψPV ), π( ∗X))− 1

λ2
g2((∇π∗)(U, ωψPV ), π∗(X))

− 1

λ2
g2((∇π∗)(ωV, ϕCX), π∗(ωV )) + g1(AωV ϕCX, ϕU) + η(QV )g1(U,BX).

This proves the theorem completely.

Theorem 3.12. Let π : (M,ϕ, ξ, η, g1) → (N, g2) be conformal hemi slant
submersion from a Kenmotsu manifold M to Riemannian manifold N . Then
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anti-invariant distribution D̄ defines totally geodesic on M if and only if

g1(TW W̄ , ωψZ)− η(V )g1(ϕW,ωψZ) =
1

λ2
g2(∇π

Wπ∗(ϕW̄ ), π∗(ωZ))

− 1

λ2
g2((∇π∗)(W,ϕY ), π∗(ωZ))

(36)

and

g1(∇WϕW̄ ,BX) =
1

λ2
g2(∇π

ϕW̄π∗(ϕCX), π∗(ϕW ))

− 1

λ2
[g2((ϕW̄ lnλ)π∗(ϕCX) + (ϕCX lnλ)π∗(ϕW̄ )

− g1(ϕW̄ , ϕCV )π∗(grad lnλ), π∗(ϕW ))]

for any W, W̄ ∈ Γ(D̄), Z ∈ Γ(D) and X ∈ Γ(kerπ∗)
⊥.

Proof. Taking W, W̄ ∈ Γ(D̄), Z ∈ Γ(D) and X ∈ Γ(kerπ∗)
⊥ and from

equations (2), (3), (4), and (7), (21), we have

g1(∇W W̄ , Z) = g1(∇W W̄ , ψ2Z)− η(W̄ )g1(∇W ξ, ψ2Z) + g1(∇W W̄ , ωZ)

− η(W̄ )g1(∇W ξ, ωψZ) + g1(∇WϕY, ωZ).

By using Theorem 3.1 and from equation (11), we arrived at

g1(∇W W̄ , Z) = cos2θg1(∇W W̄ , Z)− g1(V∇W W̄ , ωψZ)− g1(TW W̄ , ωψZ)

+ η(V )g1(ϕW,ωψZ) + g1(∇WϕW̄ , ωZ).

Considering equations (8) and (12), we have

sin2θg1(∇W W̄ , Z) = −g1(TW W̄ , ωψZ) +
1

λ2
g2(∇Wπ∗(ϕW̄ ), π∗(ωZ))

− 1

λ2
g2((∇π∗)(W,ϕW̄ ), π∗(ωZ)) + η(V )g1(ϕW,ωψZ).

On the other hand from (2), (7) and (22), we have

g1(∇W W̄ ,X) = g1(ϕ∇W W̄ , ϕX)

= g1(∇WϕW̄ ,BX)− g1(∇ϕW̄ϕCX, ϕW ).

From equations (8), (18) and Lemma 2.3, we obtained

g1(∇W W̄ ,X)

= g1(∇WϕW̄ ,BX) +
1

λ2
g2((∇π∗)(ϕW̄ , ϕCX), π∗(ϕX))

− 1

λ2
g2(∇ϕW̄π∗(ϕCX), π∗(ϕW ))

= g1(∇WϕW̄ ,BX)− 1

λ2
g2(∇ϕW̄π∗(ϕCX), π∗(ϕW ))

+
1

λ2
[g2((ϕW̄ lnλ)π∗(ϕCX) + (ϕCX lnλ)π∗(ϕW̄ )

− g1(ϕW̄ , ϕCX)π∗(grad lnλ), π∗(ϕW ))].
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From the above equations, we get the desired result.

Theorem 3.13. Let π be a conformal hemi-slant submersion from a Ken-
motsu manifold (M,ϕ, ξ, η, g1) onto a Riemannian manifold (N, g2). Then π is
a totally geodesic map on M if and only if

(a)

1

λ2
g2(∇π

Uπ∗ωψV, π∗(X)) +
1

λ2
g2((∇π∗)(U, ωψV ), π∗(X))

+
1

λ2
g2(∇π

ωV π∗ϕCX, π∗(ωU))

= −g1(AωV ϕCX,ψU)− 1

λ2
g2(ωV (lnλ)π∗ϕCZ + ϕCX(lnλ)π∗(ωV )

+ g1(ωV, ϕCX)π∗(gradlnλ), π∗(ωU))

(b)

1

λ2
g2(Z,W )g1(grad(lnλ), π∗(ϕCX))− 1

λ2
g2(∇π

ϕWπ∗ϕCX, π∗(ϕZ))

= −g1(TZϕW,BX)

(c)

− 1

λ2
g2(∇π

CY π∗(ϕCX), ωU1)

= g1(TU1
ψBY,U)− g1(TU1

CY,BX)

+ g1(H∇U1
ωBY,X) + g1(ACY ϕCX,ψU1)

− g1(CY, grad lnλ)g1(ωU1, ϕCX)

− g1(ϕCX, grad lnλ)g1(CY, ωU1)

+ g1(CY, ϕCX)g1(gradlnλ, ωU1)

for any U, V ∈ Γ(D), Z,W ∈ Γ(D̄) and X,Y ∈ Γ(kerπ∗)
⊥ with U1 ∈ Γ(kerπ∗).

Proof. (a) For any U, V ∈ Γ(D), and X ∈ Γ(kerπ∗)
⊥ and using equations

(8) and (18), we have

g2((∇π∗)(U, V ), π∗X) = g1(π∗(∇UV ), π∗X)

= λ2g1(∇UV,X).

From equations (2) and (21), we obtained

1

λ2
g2((∇π∗)(U, V ), π∗X) = gM (∇UV,X)

= −g1(
(
∇Uψ

2V,Z
)
− g1 (∇UωψV,X) + g1((∇Uϕ)ψV,X)

+ g1(∇UωV, ϕX)− g1(g(U, V )ξ − η(V )U, ϕX) + g1(ϕU, V )η(X).
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By using Theorem 3.1 and from equations (2), (4) and (22), we have

g1((∇π∗)(U, V ), π∗X)

= −cos2θg1(∇UV,X)− g1(∇UωψV,X)− g1(g(∇ωV ϕ)BX,ϕU)

+ g1((∇ωV ϕ)BX,ϕU)− g1(∇ωV ϕCX, ϕU) + g1(∇ωV ϕCX, ϕU).

By using equations (12), (18) and Lemma (2.3), we got the result as

sin2θ
1

λ2
g2((∇π∗)(U, V ), π∗(X))

= −g1(H∇UωψV,X) + g1(∇ωV ϕBX, ϕU) + g1(∇ωV ϕCX,ωU)

+ g1(∇ωV ϕCX,ψU)

= − 1

λ2
g2(∇π

Uπ∗ωψV, π∗(X))− 1

λ2
g2(∇π∗)(U, ωψV ), π∗X)

− g1(AωUϕCX,ψU)− 1

λ2
g2(∇π

ωUπ∗ϕCX, π∗(ωUV ))

− 1

λ2
g2(ωU(lnλ)π∗ϕCX + ϕCX(lnλ)π∗ωU

− g2(ωU, ϕCX)π∗(gradlnλ), π∗(ωU)).

(b) Take Z,W ∈ Γ(D̄) and X ∈ Γ(kerπ⊥
∗ ) and using equation (8) and

equation (18), we have

g2((∇π∗)(Z,W ), π∗(X)) = g1(π∗(∇ZW ), π∗(X))

= λ2g1(∇ZW,X)

Now from (2), (4) and (22),we get

1

λ2
g2((∇π∗)(Z,W ), π∗(X)) = g1(π∗(∇ZW ), π∗(X))

= g1(∇ZϕW,BX)− g1(∇ϕWCX,Z).

By using equations (12),(1) and (4), we have

1

λ2
g2((∇π∗)(Z,W ), π∗(X))

= g1(TZϕW,BX) + η(Z)η(∇ϕWCX)− g1(ϕ∇ϕWCX,ϕZ)

= g1(TZϕW,BX)− g1(∇ϕWϕCX, ϕZ).
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From equations (8), (18) and using definition of Conformal submersion
from Lemma 2.3, we got

1

λ2
g2((∇π∗)(Z,W ), π∗(X))

= g1(TZϕW,BX)− 1

λ2
g2(π∗(∇ϕWϕCX), π∗(ϕZ))

= g1(TZϕW,BX) +
1

λ2
g2(Z,W )g1(grad(lnλ), π∗(ϕCX))

− 1

λ2
g2(∇ϕWπ∗ϕCX, π∗(ϕZ)).

(c) Take X,Y ∈ Γ(kerπ∗)
⊥, U1 ∈ Γ(kerπ∗) and on using equations (8) and

(18), we have

g2((∇π∗)(U1, Y ), π∗(X)) = g1(∇π
U1
π∗Y − π∗∇U1Y, π∗(X))

= λ2g1(∇U1
Y,X).

From equations (2), (4) and equation (22), we have

1

λ2
g2((∇π∗)(U1, Z), π∗(X))

= −g1((∇U1ϕ)BY, ϕX − g1(H∇U1CY + TU1CY,BX + CX).

From equations (2), (3), (18) and Lemma 2.3, we have the final result

1

λ2
g2((∇π∗)(U1, Z), π∗X)

= −g1(g(U1, BY )ξ − η(BY )U1, X) + g1(∇U1
ψBY,X)

+ g1(∇U1
ωBY,X)− g1(H∇U1

CY,CX)− g1(TU1
CY,BX)

= g1(TU1ψBY,X)− g1(TU1CY,BX) + g1(H∇U1ωBY,X) + g1(ACY ϕCX,ψU1)

+
1

λ2
g2(∇CY π∗ϕCX,ωU1)− g1(CY, grad lnλ)g1(ωU1, ϕCX)

− g1(ϕCX, grad lnλ)g1(CY, ωU1) + g1(CY, ϕCX)g1(gradlnλ, ωU1).

If π is horizontal homothetic, it follows that (∇π∗)(X,Y ) = 0, for any
X,Y ∈ Γ(µ). Conversely, if (∇π∗)(X,Y ) = 0, taking Y = ϕX in the above
equation, we have

(37) X(lnλ)π∗(ϕX) + ϕX(lnλ)π∗(X) = 0

Taking inner product in above equation with π∗(ϕX), we get

(38) gM (Hgrad lnλ,X)gM (ϕX, ϕX) + gM (Hgrad lnλ, ϕX)gM (X,ϕX) = 0.

From the above equation λ is constant on Γ(µ). In a similar way V1, V2 ∈
Γ(ker π∗), using Lemma 2.3 (i) we have

(∇π∗)(ωV1, ωV2) = ψV1(lnλ)π∗(ψV2) + ψV2(lnλ)π∗(ψV1)

− gM (ψV1, ψV2)ϕ∗(Hgrad lnλ).
(39)



264 Mohammad Shuaib and Tanveer Fatima

Again π is horizontal homothetic, it follows that (∇π∗)(ψV1, ψV2) = 0. Con-
versely, if (∇π∗)(ψV1, ψV2) = 0, taking V1 = V2 in above equation. we obtained

(40) 2ψV1(lnλ)π∗(ψV1)− gM (ψV1, ψV1)π∗(Hgrad lnλ) = 0.

Taking inner product with Lemma (2.3) (i) with π∗ψV1 and since π is conformal
submersion, we get

(41) gM (ψV1, ψV1)gM (Hgrad lnλ) = 0.

From above equation, it follows that λ is constant on Γ(β(ker π∗)). So λ is
constant on Γ(ker π∗)

⊥. On the other hand, if π is horizontally homothetic
map, it follows that (∇π∗)(X,Y ) = 0. This proves the theorem completely.

4. Decomposition Theorems

In this section, we obtained decomposition theorems by using the existence
of conformal hemi- slant submersions. First, we recall the following results from
[24]. Let g be a Riemannian metric tensor on the manifold M =M1 ×M2 and
assume that the canonical foliations DM1 and DM2 intersect perpendicularly
everywhere. Then g is the metric tensor of

(i) a twisted product M1 ×f M2 if and only if DM1
is a totally geodesic

foliation and DM2
is a totally umbilic foliation,

(ii) a warped product M1 ×f M2 if and only if DM1 is a totally geodesic
foliation and DM2 is a spherics foliation, i.e., it is umbilic and its mean
curvature vector field is parallel.

(iii) a usual product of Riemannian manifolds if and only if DM1
and DM2

are totally geodesic foliations.

Our first decomposition theorem for a conformal hemi slant submersion
comes from Theorem (3.10) and Theorem (3.11) in terms of the second funda-
mental forms of such submersions.

Theorem 4.1. Let π be a conformal hemi-slant submersion from a Ken-
motsu manifold (M,ϕ, ξ, η, g1) to a Riemannian manifold (N, g2). Then M is a
locally product manifold if and only if

− cos2θg1(∇UPV,X)− g1(TUωV,BX)

=
1

λ2
g2(∇π

ωV π∗ϕCX, π∗(ωV ))− 1

λ2
g2(∇π

Uπ∗ωψPV, π∗(X))

− 1

λ2
g2((∇π∗)(U, ωψPV ), π∗(X))− 1

λ2
g2((∇π∗)(ωV, ϕCX), π∗(ωV ))

+ g1(AωV ϕCX, ϕU)
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and

− 1

λ2
g2(∇π

Xπ∗Y, π∗(ωψPV ))− 1

λ2
g2(∇π

Xπ∗CY, π∗(ωV ))

= −cos2θg1(∇XY, PV ) + g1(AXBY, ωV ))

− g1(X, grad lnλ)g1(Y, ωψPV )

+ g1(Y, grad lnλ)g1(X,ωψPV )− g1(X,Y )g1(grad lnλ, ωψPV )

+ g1(CY, grad lnλ)g1(X,ωV )− g1(X,CY )g1(grad lnλ, ωV )

for any X,Y ∈ Γ(kerπ∗)
⊥ and U, V ∈ Γ(kerπ∗).

Theorem 4.2. Let π be a conformal hemi-slant submersion from a Ken-
motsu manifold (M,ϕ, ξ, η, g1) to a Riemannian manifold (N, g2). Then M is a
locally twisted product manifold of the form M(kerπ∗) ×M(kerπ∗)⊥ if and only
if

g1(AXBY, ϕV ) =
1

λ2
g2(Hgrad lnλ,CY )g1(π∗X,π∗(ϕV ))

− 1

λ2
g2(X,CY )g1(π∗grad lnλ, π∗(ϕV ))

− 1

λ2
g2(∇π

Xπ∗CY, π∗(ϕV )).

(42)

and

g1(V,W )H = B(∇V ϕW ) + ϕπ∗(∇π
ϕWπ∗ϕV )

−B(Hgrad lnλ)g1(ϕV, ϕW ).
(43)

for any V,W ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ∗)
⊥

Proof. for X,Y ∈ Γ(kerπ∗)
⊥, V ∈ Γ(kerπ∗), we arrived at

g1(∇XY, V ) = g1(AXBY + V∇XBY, ϕV )

+ g1(AXCY +H∇XCY, ϕV )− g1(CX, Y )

From above equation, we get

g1(∇XY, V ) = g1(AXBY, ϕV ) + g1(H∇XCY, ϕV )− g1(CX, Y ).

Since π is conformal hemi-slant submersion, on using equation (18) and Lemma
2.3, we arrived at

g1(∇XY, V ) = g1(AXBY, ϕV )− 1

λ2
g2(Hgrad lnλ,X)g1(π∗CY, π∗(ϕV ))

− 1

λ2
g2(Hgrad lnλ,CY )g1(π∗X,π∗(ϕV ))

+
1

λ2
g2(X,CY )g1(π∗grad lnλ, π∗(ϕV ))

+
1

λ2
g2(∇π

Xπ∗CY, π∗(ϕV ))− g1(CX, Y ).
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Moreover using the fact that g1(CX,ϕV ) = 0, for X ∈ Γ(kerπ∗)
⊥, V ∈

Γ(kerπ∗), we arrived at

g1(∇XY, V ) = g1(AXBY, ϕV )

− 1

λ2
g2(Hgrad lnλ,CY )g1(π∗X,π∗(ϕV ))

+
1

λ2
g2(X,CY )g1(π∗grad lnλ, π∗(ϕV ))

+
1

λ2
g2(∇π

Xπ∗CY, π∗(ϕV )).

It follows that M(kerπ∗) is totally geodesic if and only if the equation (42) is

satisfied. On the other hand, For any V,W ∈ Γ(kerπ∗) and X,Y ∈ Γ(kerπ∗)
⊥,

we have
g1(∇VW,X) = g1(H∇V ϕW,CX) + g1(TV ϕW,BX).

Since ∇ is torsion free, [V, ϕW ] ∈ Γ(kerπ∗), we have

g1(∇VW,X) = g1(∇V ϕW,BX) + g1(∇ϕWϕV, ϕCX).

Since π is conformal hemi-slant submersion, by using Lemma 2.3 and from the
fact that g1(CX,ϕV ) = 0 for X ∈ (kerπ∗)

⊥ and V ∈ (kerπ∗), we have

g1(∇VW,X) = g1(∇V ϕW,BX) +
1

λ2
g2(∇π

ϕWπ∗ϕV, π∗(ϕCX))

− g1(ϕV, ϕW )g1(grad lnλ, π∗(ϕCV )).

From the above result, we conclude that M(kerπ∗)⊥ is totally umbilical if and
only if the equation (43) satisfied.

Acknowledgement: The authors are thankful to the referee for his/her valu-
able suggestions and careful reading of the manuscript.
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