• Title/Summary/Keyword: Invariant Condition

Search Result 155, Processing Time 0.029 seconds

HARMONIC MAPS BETWEEN THE GROUP OF AUTOMORPHISMS OF THE QUATERNION ALGEBRA

  • Kim, Pu-Young;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.331-339
    • /
    • 2012
  • In this paper, let Q be the real quaternion algebra which consists of all quaternionic numbers, and let G be the Lie group of all automorphisms of the algebra Q. Assume that g is an arbitrary given left invariant Riemannian metric on the Lie group G. Then, we obtain a necessary and sufficient condition for an automorphism of the group G to be harmonic.

ON THE EXISTENCE OF A UNIQUE INVARIANT PROBABILITY FOR A CLASS OF MARKOV PROCESSES

  • Lee, Oesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.91-97
    • /
    • 1993
  • In this article, we consider the case that S is a topologically complete subspace of $R^{k}$ , and that .GAMMA. is a set of monotone functions on S into S. It is obtained the sugficient condition for the existence of a unique invariant probability to which $P^{(n}$/(x,dy) converges exponentially fast in a metric stronger than the Kolmogorov's distance. This extends the earlier results of Bhattacharya and Lee (1988) who considered the case .GAMMA. a set of nondecreasing functions.tions.

  • PDF

A SIMPLE PROOF OF QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF J

  • Choi, SoYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.919-920
    • /
    • 2011
  • For two even unimodular positive definite integral quadratic forms A[X], B[X] in n-variables, J. K. Koo [1, Theorem 1] showed that ${\theta}_A(\tau)/{\theta}_B(\tau)$ is a rational function of J, satisfying a certain condition. Where ${\theta}_A(\tau)$ and ${\theta}_B(\tau)$ are theta series related to A[X] and B[X], respectively, and J is the classical modular invariant. In this paper we give a simple proof of Theorem 1 of [1].

HYPERCYCLICITY ON INVARIANT SUBSPACES

  • Petersson, Henrik
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.903-921
    • /
    • 2008
  • A continuous linear operator $T\;:\;X{\rightarrow}X$ is called hypercyclic if there exists an $x\;{\in}\;X$ such that the orbit ${T^nx}_{n{\geq}0}$ is dense. We consider the problem: given an operator $T\;:\;X{\rightarrow}X$, hypercyclic or not, is the restriction $T|y$ to some closed invariant subspace $y{\subset}X$ hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on $H({\mathbb{C}}^d)$ (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) $\rightarrow$ ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of $H({\mathbb{C}}^d)$.

SOME PROPERTIES OF INVARIANT SUBSPACES IN BANACH SPACES OF ANALYTIC FUNCTIONS

  • Hedayatian, K.;Robati, B. Khani
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.523-533
    • /
    • 2007
  • Let $\cal{B}$ be a reflexive Banach space of functions analytic on the open unit disc and M be an invariant subspace of the multiplication operator by the independent variable, $M_z$. Suppose that $\varphi\;\in\;\cal{H}^{\infty}$ and $M_{\varphi}$ : M ${\rightarrow}$ M, defined by $M_{\varphi}f={\varphi}f$, is the operator of multiplication by ${\varphi}$. We would like to investigate the spectrum and the essential spectrum of $M_{\varphi}$ and we are looking for the necessary and sufficient conditions for $M_{\varphi}$ to be a Fredholm operator. Also we give a sufficient condition for a sequence $\{w_n\}$ to be an interpolating sequence for $\cal{B}$. At last the commutant of $M_{\varphi}$ under certain conditions on M and ${\varphi}$ is determined.

A Frozen Time Receding Horizon Control for a Linear Discrete Time-Varying System (선형 이산 시변시스템을 위한 고정시간 이동구간 제어)

  • Oh, Myung-Hwan;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be applied to real physical systems effectively in comparison with the conventional RHC.

Condition-invariant Place Recognition Using Deep Convolutional Auto-encoder (Deep Convolutional Auto-encoder를 이용한 환경 변화에 강인한 장소 인식)

  • Oh, Junghyun;Lee, Beomhee
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Visual place recognition is widely researched area in robotics, as it is one of the elemental requirements for autonomous navigation, simultaneous localization and mapping for mobile robots. However, place recognition in changing environment is a challenging problem since a same place look different according to the time, weather, and seasons. This paper presents a feature extraction method using a deep convolutional auto-encoder to recognize places under severe appearance changes. Given database and query image sequences from different environments, the convolutional auto-encoder is trained to predict the images of the desired environment. The training process is performed by minimizing the loss function between the predicted image and the desired image. After finishing the training process, the encoding part of the structure transforms an input image to a low dimensional latent representation, and it can be used as a condition-invariant feature for recognizing places in changing environment. Experiments were conducted to prove the effective of the proposed method, and the results showed that our method outperformed than existing methods.

THE TRANSFORMATION GROUPS AND THE ISOMETRY GROUPS

  • Kim, Young-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1989
  • Methods of Riemannian geometry has played an important role in the study of compact transformation groups. Every effective action of a compact Lie group on a differential manifold leaves a Riemannian metric invariant and the study of such actions reduces to the one involving the group of isometries of a Riemannian metric on the manifold which is, a priori, a Lie group under the compact open topology. Once an action of a compact Lie group is given an invariant metric is easily constructed by the averaging method and the Lie group is naturally imbedded in the group of isometries as a Lie subgroup. But usually this invariant metric has more symmetries than those given by the original action. Therefore the first question one may ask is when one can find a Riemannian metric so that the given action coincides with the action of the full group of isometries. This seems to be a difficult question to answer which depends very much on the orbit structure and the group itself. In this paper we give a sufficient condition that a subgroup action of a compact Lie group has an invariant metric which is not invariant under the full action of the group and figure out some aspects of the action and the orbit structure regarding the invariant Riemannian metric. In fact, according to our results, this is possible if there is a larger transformation group, containing the oringnal action and either having larger orbit somewhere or having exactly the same orbit structure but with an orbit on which a Riemannian metric is ivariant under the orginal action of the group and not under that of the larger one. Recently R. Saerens and W. Zame showed that every compact Lie group can be realized as the full group of isometries of Riemannian metric. [SZ] This answers a question closely related to ours but the situation turns out to be quite different in the two problems.

  • PDF

Feedback-Based Iterative Learning Control for MIMO LTI Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.269-277
    • /
    • 2008
  • This paper proposes a necessary and sufficient condition of convergence in the $L_2$-norm sense for a feedback-based iterative learning control (ILC) system including a multi-input multi-output (MIMO) linear time-invariant (LTI) plant. It is shown that the convergence conditions for a nominal plant and an uncertain plant are equal to the nominal performance condition and the robust performance condition in the feedback control theory, respectively. Moreover, no additional effort is required to design an iterative learning controller because the performance weighting matrix is used as an iterative learning controller. By proving that the least upper bound of the $L_2$-norm of the remaining tracking error is less than that of the initial tracking error, this paper shows that the iterative learning controller combined with the feedback controller is more effective to reduce the tracking error than only the feedback controller. The validity of the proposed method is verified through computer simulations.