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ON THE EXISTENCE OF A UNIQUE
INVARIANT PROBABILITY FOR A
CLASS OF MARKOV PROCESSES

OESOOK LEE

1. Introduction

Let (S,S) be a measurable space, I a set of S-measurable mappings
on S into S. Endow T with a o-field J such that (y,z) — ~(z) is
measurable from (' x §,J ® §) to (5,8), and let P be a probability
measure on 7.

Each P and initial distribution, the distribution of Xo, determines a
Markov process { X, : n > 0} with state space S and one-step transition

probability P(z, B) on (5,S) defined by

P(z,B)=P({yeTl:~v(z)e B}), re€S§,BesS,

where for fixed B € §, P(-, B) is a measurable function on S, and for
fixed z € S, P(z,-) is a probability measure on S.

Markov process { X, } which is generated by the above manner is not
in general irreducible.

Denote P™ by the joint distribution of @1, a,--- , a, where ay, aq, - -

1s a sequence of independent identically distributed random maps on
some probability space taking values in I" with common distribution P,
le, P" =P x Px-.-x Pon (I'"&§%"),

We shall write P{")(z, dy) for the n-step transition probability, with
PY(z,dy) = P(z,dy). Then P™)(z,dy) is the distribution of anayn_;

S .

Received April 24, 1992.
This paper was supported by Nondirected Research Fund, Korea Research Foun-
dation, 1990

91



Oesook Lee

Define the adjoint operator T* on P(S) of all prebability measures
on S by

T*p(B)::/;P(x,B)p(dx), for every B € S,

and define T*" on P(S) by

T*"w(B) = LP(")(m,B)p(dx), forevery B € S,n>1.

T* = T*.

Any element 7 in P(S) is called an invariant p-obability for the
transition probability P(z,dy) if T*x = .

In this article, we consider the case that S is a topo.ogically complete
subspace of R¥, and that I' is a set of monotone funcsions on S into S.

It is obtained the sufficient condition for the existence of a unique
invariant probability to which P(™)(z,dy) converges exponentially fast
in a metric stronger than the Kolmogorov’s distance. This extends the
carlier results of Bhattacharya and Lee (1988) who considered the case
I' a set of nondecreasing functions.

I1. Existence of a unique invariant probability

Let S C R* be topologically complete in its relativized Euclidean
topology and let B(S) be the Boral o-filed of S. For I we take the
set of all continuous monotone (decreasing or increasiag) functions 7y =
(4D, 4B 7% on S into itself. In other words 7‘:""(1(1),55(2)_ cee
®)) 1 < i < k, is monotone decreasing in each coordinate z(}) z(4) ...
2'®) or monotone increasing in each coordinate. We shall often write
~vx for y(z).

Let J be a o-field on I' such that the map (v, ) — vz is measurable
on (I' x 5,7 ® B(S)) into (S, B(S)).

Let A be the class of all sets A C S of the form

A={y €S  Yym-1-mly) <z}
where (11,72, ,¥a) € I (n > 1) and z € R*.
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Let P(S) be the set of all probability measures on (S, B(S)).
Define the distance d on P(S) by

(2.1) d{p,v) = supaca{|lu(A) — v(4A)[}, p,ve P(S).
The topology on P(S) defined by d is stronger than the weak-star
topology.

LEMMA 2.1. The space P(S) is complete ander the distance d de-
fined by (2.1).

Proof. In [1] Bhattacharya and Lee shows that when I is a set of con-
tinuous nondecreasing function. The proof of this lemma goes virtually
the same line by line as lemma 2.2 [1], and we omit it.

Now we make the assumption on P;
There exists z9 € S and a positive integer 1 such that

(2.2) P™T;)>0 and P™(I;)>0
where

{Fl:{(‘)’1,72,"',’Ym)EF"':’Ym'--’n(y)Sxo Vy}
F2={(71,72,-'-,'ym)el‘"‘:'ym'--’yl(y)Z:cg Vy}.

Before stating the main theorem, we prove the following lemmas.
LEMMA 2.2. T* is a contraction on P(S).

Proof. If v is a continuous monotone function on S into S, then so
is v7!, and hence v"' A C A4, Vv € T
For u,v € P(S),
dT"u, T*v) = supaca{|T"pu(A) — T*»(A)|}
< [ supacalir™(4) = 77 ()| Pla)
< d(p,v)
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HAe A thenA={y €S : v, -7(y) < z}forsome (v, - ,7n) €
I'* and for some z € R*. Since 7 is continuous monotone, A is one of
the following two types:

(Th) if ye€A, ¢y €8S suchthat ¢y’ <y isin A
(T2) if yeA, y €S suchthat y' >y isin A.

LEMMA 2.3. Suppose there exists some o € S and a positive integer
m such that (2.2) holds. Then for any u,v € P(S),

d(T*" pu, T*™v) < pd(p,v)
where p = max{1 — P™(T';),1 - P™(I'2)} < 1.

Proof. Hwelet Ry ={y€ S:y <z}, Re =-y€85:y >z},
then Ty = {y € T™ : %(S) C R1}, T2 = {y € I™ : 4(S) C R2}. Let
Al={A€eA:ANRy; #0} and A; = {A € A: AR, = ¢}. Divide
A; into three parts such as

A ={A € A : Ais of type(Ty) in (2.3)},
Az = {A € A : Ais of type(T;) and ANRy # B},
Az = {A €A : Ais of type(Tg) and ANR = 0}

Clealy Ay, Ai2, Aj3, A; is a partition of A.
We may easily check that if A € Ay;, then A D %y and if A € Ayq,
then A D Ry and hence for any u,v € P(S),

#lym 1) (A) = v(m ) TH(A) =0
if
1) Ae AU Az and (’)’],”' ,’Ym) €T orif
2) A€ AjpUAy and (71, ,ym) € T2 or if
3) (71, -+ »,¥m) € T'1NTy, since for each case 1), 2), 31, (7m -+ 71) " (A)
becomes empty or the hole set 5.
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Now,

d(T""‘;z,T‘"'u):supAeA{;/F p(ym ) HAEP™ (Ym - m1)

= [ o) AP )
< supaea{h + L + I + I},
where
= [ ) A = vm ) AP )
'y —=Tinl,
I, =/ ltCym 7)) HA) = v(Ym 1) (AP (ym - 1)
I‘;-Flnl“,

b= [ e ) ) = om ) AP )
Ipm~Tuly

L= [ W)™ A = o) AP ()
I'inlg
Because I; vanishes on A;; U A3 and I vanishes on A;p U Az,

supacal{li + I} < max{supacali,supacalz}.
Therefore we have
d(T*™u, T*™v) < [max{P™([1) — P™(T1 NT2), P"(Iy) — P™(T'1 NT2)}
+1— P™(Ty UT)d(u, »)
=max{l - P™(I"1),1 — P™(T'2)}d(p,v).
Our main result is the following:

THEOREM 2.4. If (2.2) holds for some zq € S and some positive in-
teger m, then there exists a unique invariant probability = on (S, B(S))
such that

(2.4)  supzesd(P"™(z, dy), 7(dy)) < pP™ 0 as n-— co.
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Proof. For p,v € P(S),

d(T*"[L,fT*nV) — d(T*m(T*ln-m)u)’Txum(jnu(rh»m)u))
Spd(Tr‘r(n—m)“’Tt(n-’m)V)
<< P ) < el

n=123--,since d(p,v) <1, Vu,v e P(S).
For n’ > n, one has

d(P™ (2, dy),p™ )z, dy)) = d(T*"p,"""v)

(2.5
) < p["/m]

¥

where g = 6,, and v = T*»'=m§_

Hence P (2, dy) is a Cauchy sequence in the metric d. Let 7 be its
limit, which exists by Lemma 2.1. Letting n' — x in (2.5), we get
(2.4). Since v is continuous, z —— P(z,dy) is weik-star continuous.
The fact that z — P(z,dy) is weak-star continuous ensures that 7
on P(5) is weak-star continuous. The reason is: Suppose y, converges
weakly to u, pin, p € P(S). Then for real-valued bounded continous
function f on 5,

/S FNT* )z = /ﬁ L f(2)P(, dz)puadz)
-ﬂ'[sv/sf('z)P(x,dz u(dz)
- /9 )T u)(dz).

Weak-star continuity of T* together with weak convergence of T*( Pz,
dy)

= P("+”(:r,dy) to w(dy)(n — oc) implies the inariance of =, i.c.,
T*n = m which completes our proof.
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