ON THE EXISTENCE OF A UNIQUE INVARIANT PROBABILITY FOR A CLASS OF MARKOV PROCESSES

OESOOK LEE

1. Introduction

Let (S, S) be a measurable space, Γ a set of S-measurable mappings on S into S. Endow Γ with a σ -field $\mathcal J$ such that $(\gamma, x) \longrightarrow \gamma(x)$ is measurable from $(\Gamma \times S, \mathcal J \otimes S)$ to (S, S), and let P be a probability measure on $\mathcal J$.

Each P and initial distribution, the distribution of X_0 , determines a Markov process $\{X_n : n \geq 0\}$ with state space S and one-step transition probability P(x, B) on (S, S) defined by

$$P(x,B) = P(\{\gamma \in \Gamma : \gamma(x) \in B\}), \quad x \in S, B \in S,$$

where for fixed $B \in \mathcal{S}$, $P(\cdot, B)$ is a measurable function on S, and for fixed $x \in S$, $P(x, \cdot)$ is a probability measure on S.

Markov process $\{X_n\}$ which is generated by the above manner is not in general irreducible.

Denote P^n by the joint distribution of $\alpha_1, \alpha_2, \dots, \alpha_n$ where $\alpha_1, \alpha_2, \dots$

is a sequence of independent identically distributed random maps on some probability space taking values in Γ with common distribution P, i.e., $P^n = P \times P \times \cdots \times P$ on $(\Gamma^n, \mathcal{S}^{\otimes n})$.

We shall write $P^{(n)}(x, dy)$ for the n-step transition probability, with $P^{(1)}(x, dy) = P(x, dy)$. Then $P^{(n)}(x, dy)$ is the distribution of $\alpha_n \alpha_{n-1} \cdots \alpha_1 x$.

Received April 24, 1992.

This paper was supported by Nondirected Research Fund, Korea Research Foundation, 1990

Define the adjoint operator T^* on $\mathcal{P}(S)$ of all probability measures on S by

$$T^*\mu(B)=\int_S P(x,B)\mu(dx), \quad ext{for every} \quad B\in\mathcal{S},$$

and define T^{*n} on $\mathcal{P}(S)$ by

$$T^{*n}\mu(B) = \int_{\mathcal{S}} P^{(n)}(x,B)\mu(dx), \quad \text{for every} \quad B \in \mathcal{S}, n \geq 1.$$

$$T^{*1} = T^*.$$

Any element π in $\mathcal{P}(S)$ is called an invariant probability for the transition probability P(x, dy) if $T^*\pi = \pi$.

In this article, we consider the case that S is a topologically complete subspace of R^k , and that Γ is a set of monotone functions on S into S.

It is obtained the sufficient condition for the existence of a unique invariant probability to which $P^{(n)}(x,dy)$ converges exponentially fast in a metric stronger than the Kolmogorov's distance. This extends the earlier results of Bhattacharya and Lee (1988) who considered the case Γ a set of nondecreasing functions.

II. Existence of a unique invariant probability

Let $S \subset R^k$ be topologically complete in its relativized Euclidean topology and let $\mathcal{B}(S)$ be the Boral σ -filed of S. For Γ we take the set of all continuous monotone (decreasing or increasing) functions $\gamma = (\gamma^{(1)}, \gamma^{(2)}, \cdots, \gamma^{(k)})$ on S into itself. In other words $\gamma^{(i)}(x^{(1)}, x^{(2)}, \cdots, x^{(k)})$, $1 \leq i \leq k$, is monotone decreasing in each coordinate $x^{(1)}, x^{(2)}, \cdots, x^{(k)}$ or monotone increasing in each coordinate. We shall often write γx for $\gamma(x)$.

Let \mathcal{J} be a σ -field on Γ such that the map $(\gamma, x) \longrightarrow \gamma x$ is measurable on $(\Gamma \times S, \mathcal{J} \otimes \mathcal{B}(S))$ into $(S, \mathcal{B}(S))$.

Let \mathcal{A} be the class of all sets $A \subset S$ of the form

$$A = \{ y \in S : \gamma_n \gamma_{n-1} \cdots \gamma_1(y) \le x \}$$

where $(\gamma_1, \gamma_2, \dots, \gamma_n) \in \Gamma^n$ $(n \ge 1)$ and $x \in \mathbb{R}^k$.

On the existence of a unique invariant probability for a class of Markov processes

Let $\mathcal{P}(S)$ be the set of all probability measures on $(S, \mathcal{B}(S))$. Define the distance d on $\mathcal{P}(S)$ by

(2.1)
$$d(\mu,\nu) = \sup_{A \in \mathcal{A}} \{ |\mu(A) - \nu(A)| \}, \quad \mu,\nu \in \mathcal{P}(S).$$

The topology on $\mathcal{P}(S)$ defined by d is stronger than the weak-star topology.

LEMMA 2.1. The space $\mathcal{P}(S)$ is complete under the distance d defined by (2.1).

Proof. In [1] Bhattacharya and Lee shows that when Γ is a set of continuous nondecreasing function. The proof of this lemma goes virtually the same line by line as lemma 2.2 [1], and we omit it.

Now we make the assumption on P;

There exists $x_0 \in S$ and a positive integer in such that

(2.2)
$$P^{m}(\Gamma_1) > 0 \quad \text{and} \quad P^{m}(\Gamma_2) > 0$$

where

$$\left\{ \begin{array}{l} \Gamma_1 = \{ (\gamma_1, \gamma_2, \cdots, \gamma_m) \in \Gamma^m : \gamma_m \cdots \gamma_1(y) \leq x_0 \quad \forall y \} \\ \Gamma_2 = \{ (\gamma_1, \gamma_2, \cdots, \gamma_m) \in \Gamma^m : \gamma_m \cdots \gamma_1(y) \geq x_0 \quad \forall y \}. \end{array} \right.$$

Before stating the main theorem, we prove the following lemmas.

LEMMA 2.2. T^* is a contraction on $\mathcal{P}(S)$.

Proof. If γ is a continuous monotone function on S into S, then so is γ^{-1} , and hence $\gamma^{-1}\mathcal{A}\subset\mathcal{A}, \forall \gamma\in\Gamma$.

For $\mu, \nu \in \mathcal{P}(S)$,

$$d(T^*\mu, T^*\nu) = \sup_{A \in \mathcal{A}} \{ |T^*\mu(A) - T^*\nu(A)| \}$$

$$\leq \int_{\Gamma} \sup_{A \in \mathcal{A}} |\mu\gamma^{-1}(A) - \nu\gamma^{-1}(A)| P(d\gamma)$$

$$\leq d(\mu, \nu)$$

Oesook Lee

If $A \in \mathcal{A}$, then $A = \{y \in S : \gamma_n \cdots \gamma_1(y) \leq x\}$ for some $(\gamma_1, \cdots, \gamma_n) \in \Gamma^n$ and for some $x \in \mathbb{R}^k$. Since γ is continuous monotone, A is one of the following two types:

$$(T_1)$$
 if $y \in A$, $y' \in S$ such that $y' \leq y$ is in A .

$$(T_2)$$
 if $y \in A$, $y' \in S$ such that $y' \ge y$ is in A .

LEMMA 2.3. Suppose there exists some $x_0 \in S$ and a positive integer m such that (2.2) holds. Then for any $\mu, \nu \in \mathcal{P}(S)$,

$$d(T^{*m}\mu, T^{*m}\nu) \le \rho d(\mu, \nu)$$

where $\rho = \max\{1 - P^m(\Gamma_1), 1 - P^m(\Gamma_2)\} < 1$.

Proof. If we let $\mathcal{R}_1 = \{y \in S : y \leq x_0\}, \mathcal{R}_2 = \{y \in S : y \geq x_0\},$ then $\Gamma_1 = \{\gamma \in \Gamma^m : \gamma(S) \subset \mathcal{R}_1\}, \Gamma_2 = \{\gamma \in \Gamma^m : \gamma(S) \subset \mathcal{R}_2\}.$ Let $\mathcal{A}_1 = \{A \in \mathcal{A} : A \cap \mathcal{R}_2 \neq \emptyset\}$ and $A_2 = \{A \in \mathcal{A} : A \cap \mathcal{R}_2 = \phi\}.$ Divide \mathcal{A}_1 into three parts such as

$$\mathcal{A}_{11} = \{ A \in \mathcal{A}_1 : A \text{ is of type}(T_1) \text{ in } (2.3) \},$$

$$\mathcal{A}_{12} = \{ A \in \mathcal{A}_1 : A \text{ is of type}(T_2) \text{ and } A \cap \mathcal{R}_1 \neq \emptyset \},$$

$$\mathcal{A}_{13} = \{ A \in \mathcal{A}_1 : A \text{ is of type}(T_2) \text{ and } A \cap \mathcal{R}_1 = \emptyset \}.$$

Clealy \mathcal{A}_{11} , \mathcal{A}_{12} , \mathcal{A}_{13} , \mathcal{A}_{2} is a partition of \mathcal{A} .

We may easily check that if $A \in \mathcal{A}_{11}$, then $A \supset \mathcal{R}_1$ and if $A \in \mathcal{A}_{12}$, then $A \supset \mathcal{R}_2$ and hence for any $\mu, \nu \in \mathcal{P}(S)$,

$$\mu(\gamma_m \cdots \gamma_1)^{-1}(A) - \nu(\gamma_m \cdots \gamma_1)^{-1}(A) = 0$$

if

- 1) $A \in \mathcal{A}_{11} \cup \mathcal{A}_{13}$ and $(\gamma_1, \dots, \gamma_m) \in \Gamma_1$ or if
- 2) $A \in \mathcal{A}_{12} \cup \mathcal{A}_2$ and $(\gamma_1, \dots, \gamma_m) \in \Gamma_2$ or if
- 3) $(\gamma_1, \dots, \gamma_m) \in \Gamma_1 \cap \Gamma_2$, since for each case 1), 2), 3), $(\gamma_m \dots \gamma_1)^{-1}(A)$ becomes empty or the hole set S.

On the existence of a unique invariant probability for a class of Markov processes

Now,

$$d(T^{*m}\mu, T^{*m}\nu) = \sup_{A \in \mathcal{A}} \{ | \int_{\Gamma^m} \mu(\gamma_m \cdots \gamma_1)^{-1} (A) dP^m (\gamma_m \cdots \gamma_1)$$

$$- \int_{\Gamma^m} \nu(\gamma_m \cdots \gamma_1)^{-1} (A) dP^m (\gamma_m \cdots \gamma_1) | \}$$

$$< \sup_{A \in \mathcal{A}} \{ I_1 + I_2 + I_3 + I_4 \},$$

where

$$\begin{split} I_1 &= \int_{\Gamma_1 - \Gamma_1 \cap \Gamma_2} |\mu(\gamma_m \cdots \gamma_1)^{-1}(A) - \nu(\gamma_m \cdots \gamma_1)^{-1}(A)| dP^m(\gamma_m \cdots \gamma_1) \\ I_2 &= \int_{\Gamma_2 - \Gamma_1 \cap \Gamma_2} |\mu(\gamma_m \cdots \gamma_1)^{-1}(A) - \nu(\gamma_m \cdots \gamma_1)^{-1}(A)| dP^m(\gamma_m \cdots \gamma_1) \\ I_3 &= \int_{\Gamma_m - \Gamma_1 \cup \Gamma_2} |\mu(\gamma_m \cdots \gamma_1)^{-1}(A) - \nu(\gamma_m \cdots \gamma_1)^{-1}(A)| dP^m(\gamma_m \cdots \gamma_1) \\ I_4 &= \int_{\Gamma_1 \cap \Gamma_2} |\mu(\gamma_m \cdots \gamma_1)^{-1}(A) - \nu(\gamma_m \cdots \gamma_1)^{-1}(A)| dP^m(\gamma_m \cdots \gamma_1). \end{split}$$

Because I_1 vanishes on $\mathcal{A}_{11} \cup \mathcal{A}_{13}$ and I_2 vanishes on $\mathcal{A}_{12} \cup \mathcal{A}_2$,

$$\sup_{A\in\mathcal{A}}\{I_1+I_2\}\leq \max\{\sup_{A\in\mathcal{A}}I_1,\sup_{A\in\mathcal{A}}I_2\}.$$

Therefore we have

$$\begin{split} d(T^{*m}\mu, T^{*m}\nu) &\leq [\max\{P^m(\Gamma_1) - P^m(\Gamma_1 \cap \Gamma_2), P^m(\Gamma_2) - P^m(\Gamma_1 \cap \Gamma_2)\} \\ &+ 1 - P^m(\Gamma_1 \cup \Gamma_2)]d(\mu, \nu) \\ &= \max\{1 - P^m(\Gamma_1), 1 - P^m(\Gamma_2)\}d(\mu, \nu). \end{split}$$

Our main result is the following:

THEOREM 2.4. If (2.2) holds for some $x_0 \in S$ and some positive integer m, then there exists a unique invariant probability π on $(S, \mathcal{B}(S))$ such that

$$(2.4) \quad \sup_{x \in S} d(P^{(n)}(x, dy), \pi(dy)) \le \rho^{[n/m]} \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty.$$

Proof. For $\mu, \nu \in \mathcal{P}(S)$,

$$d(T^{*n}\mu, T^{*n}\nu) = d(T^{*m}(T^{*(n-m)}\mu), T^{*m}(T^{*(n-m)}\nu))$$

$$\leq \rho d(T^{*(n-m)}\mu, T^{*(n-m)}\nu)$$

$$\leq \dots \leq \rho^{[n/m]} d(\mu, \nu) \leq \rho^{[n/n]},$$

 $n = 1, 2, 3, \dots$, since $d(\mu, \nu) \le 1, \forall \mu, \nu \in \mathcal{P}(S)$. For n' > n, one has

(2.5)
$$d(P^{(n)}(x,dy), p^{(n')}(x,dy)) = d(T^{*n}\mu, T^{*n}\nu) \leq \rho^{[n/m]},$$

where $\mu = \delta_x$, and $\nu = T^{*(n'-n)}\delta_x$.

Hence $P^{(n)}(x,dy)$ is a Cauchy sequence in the metric d. Let π be its limit, which exists by Lemma 2.1. Letting $n' \to \infty$ in (2.5), we get (2.4). Since γ is continuous, $x \to P(x,dy)$ is weak-star continuous. The fact that $x \to P(x,dy)$ is weak-star continuous ensures that T^* on $\mathcal{P}(S)$ is weak-star continuous. The reason is: Suppose μ_n converges weakly to μ , μ_n , $\mu \in \mathcal{P}(S)$. Then for real-valued bounded continuous function f on S,

$$\int_{S} f(z)(T^*\mu_n)dz = \int_{S} \int_{S} f(z)P(x,dz)\mu_n(dx)$$

$$\longrightarrow \int_{S} \int_{S} f(z)P(x,dz)\mu(dx)$$

$$= \int_{S} f(z)(T^*\mu)(dz).$$

Weak-star continuity of T^* together with weak convergence of $T^*(P^n(x, dy))$

 $=P^{(n+1)}(x,dy)$ to $\pi(dy)(n\longrightarrow\infty)$ implies the invariance of π , i.e., $T^*\pi=\pi$ which completes our proof.

On the existence of a unique invariant probability for a class of Markov processes

References

- 1. Bhattacharya, R.N. and Lee, O.(1988), Asymptotics of a class of Markov processes which are not in general irreducible, Ann. Prob. 16, 1333-1347.
- 2. Bhattacharya, R.N. and Lee, O. (1988), Ergodicity and central limit theorem for a class of Markov processes., Journal of Multi. Analy. Vol. 27., No. 1, 80-90.
- 3. Billingsley, P. (1968), Convergence of probability measures, Wiley, New York.
- 4. Billingsley, P. (1979), Probability and measure, Wiley, New York.
- 5. Dubins, L.E. and Freedman, D.A. (1966), Invariant probabilities for certain Markov process., Ann. Math. Statist. 37, 837-847.
- 6. Lee, O. (1986) Ph. D. thesis. Indiana University..
- 7. Orey, S. (1971), Limit theorems for Markov chain transition probabilities, Van Nostrand, New York.
- 8. Parthasarathy, K.R. (1967), Probability measures on metric spaces., Academic, New York.
- 9. Revuz, D. (1984), Markov chains 2nd ed., North-Holland Amsterdam.

DEPARTMENT OF STATISTICS, EWHA WOMANS UNIVERSITY, SEOUL120-750, KOREA.