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INVARIANT (α, β)-METRIC OF DOUGLAS AND BERWALD

TYPE

Kirandeep Kaur and Gauree Shanker∗

Abstract. In this paper, we find the conditions for a homogeneous Finsler
space with an invariant infinite series (α, β)-metric to be of Berwald type.

Also, we derive the necessary and sufficient condition for such a metric

to be a Douglas metric.

1. Introduction

According to Chern ([6]), Finsler geometry is just the Riemannian geometry
without the quadratic restriction. A connected smooth manifold M is called
a Finsler space if there exists a function F : TM −→ [0,∞) such that F is
smooth on the slit tangent bundle TM\{0} and the restriction of F to any
Tp(M), p ∈ M , is a Minkowski norm. In this case, F is called a Finsler metric.
The notion of (α, β)-metric in Finsler geometry was introduced by Matsumoto
in 1972 ([17]). An (α, β)-metric is a Finsler metric of the form

F = αϕ(s), s =
β

α
,

where α =
√
aij(x)yiyj is a Riemannian metric on a connected smooth n-

manifold M and β = bi(x)y
i is a 1-form on M . It is well known fact that (α, β)-

metrics are the generalizations of the Randers metric introduced by Randers
in ([20]). (α, β)-metrics have various applications in physics and biology ([1]).

Consider the rth series (α, β)-metric:

F (α, β) = β

r=∞∑
r=0

(
α

β

)r

.

If r = 1, then it is a Randers metric. If r = ∞, then

F =
β2

β − α
.
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This metric is called an infinite series (α, β)-metric. An interesting fact about
this metric is that, it is the difference of a Randers metric and a Matsumoto
metric.

Using the properties of geodesics, one can characterize Berwald metrics
and Douglas metrics. According to Szabo ([24]), Berwald metrics are “almost
Riemannian”, i.e., a Finsler metric F on a smooth n-manifold M is a Berwald
metric if and only if there exists a Riemannian metric g on M such that (M, g)
and (M,F ) have same geodesics as parametrized curves. F is a Douglas metric
if and only if there exists a Riemannian metric g on M such that (M, g) and
(M,F ) have same geodesics as point sets ([4], [7]).

In ([10]), Douglas introduced the notion of a new curvature, which later
on named as Douglas curvature. A Finsler metric with vanishing Douglas
curvature is a Douglas metric. A Randers metric F = α + β is a Douglas
metric if and only if β is closed and Randers metric have same geodesics as
that of Riemannian metric α ([3]).

The authors in ([15]) give a characterization of (α, β)-metrics of Douglas
type for n ≥ 3. Yang ([25]) give a characterization of (α, β)-metrics of Douglas
type for n = 2. Liu and Deng ([16]) study the homogeneous (α, β)-metrics
of Douglas type. They prove that a homogeneous (α, β)-metric is a Douglas
metric if and only if either F is a Berwald metric or a Douglas metric of
Randers type. Also, in ([16]), the authors discuss homogeneous (α, β)-metrics
of Berwald type. Some authors ([8], [11, 12, 13], [16], [21, 22, 23] etc.) have
studied various properties of homogeneous (α, β)-metrics.

2. Preliminaries

In this section, we discuss Berwald and Douglas metrics which are required
to study their counterparts in homogeneous Finsler spaces. Let F be a Finsler
metric on a smooth n-manifold and π∗TM be the pulled-back tangent bundle
over TM0 = TM − {0}, by the natural projection π : TM0 → M . For a stan-

dard local coordinate system (xi, yi) in TM0, let

{
∂

∂xi
,
∂

∂yi

}
denote the local

natural frame and
{
dxi, dyi

}
denote the local natural coframe for T (TM0). Let

G = yi
∂

∂xi
− 2Gi ∂

∂yi
be a vector field on TM0, where

Gi :=
1

4
gil

{(
F 2

)
xkyl y

k −
(
F 2

)
xl

}
, i = 1, 2, ..., n, x ∈ M, y ∈ TxM.

Here, the vector field G is called a spray which is useful in determining geodesics
of F and Gi are called geodesic spray coefficients of Finsler metric F in a
standard local coordinate system of TM . The geodesics of F are determined
by the following equation

ẍi + 2Gi(x, ẋ) = 0.
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We can say that the projections of the integral curves of G are the geodesics
of F .
If the geodesic coefficients are quadratic in yi, i.e.,

Gi =
1

2
Γi
jk(x)y

jyk,

where Γi
jk(x) are local functions on M , then F is called a Berwald metric.

If the geodesic coefficients can be written as

Gi =
1

2
Γi
jk(x)y

jyk + P (x, y)yi,

where P (x, y) is a local positively homogeneous function of degree one on TM ,
then F is called a Douglas metric ([3], [5]). One can easily see that every
Riemannian metric is a Berwald metric and every Berwald metric is a Douglas
metric.

The authors in [15] give a necessary and sufficient condition for an (α, β)-
metric to be of Douglas type which is stated below:

Theorem 2.1. Suppose that F = αϕ(s) be an (α, β)-metric on an open
subset V of Rn (n ≥ 3). Further suppose that the following conditions are
satisfied:

(i) either b is constant on V or db ̸= 0 everywhere,
(ii) β is not parallel with respect to α,
(iii) F is not is of Randers type.

Then F is a Douglas metric on V if and only if the function ϕ(s) satisfies the
following differential equation:

(1)
{
1 +

(
k1 + k2s

2 + k3
)
s2
}
ϕ

′′
(s) =

(
k1 + k2s

2
){

ϕ(s)− sϕ
′
(s)

}
and the covariant derivative ∇β = bi|jy

idxj of β with respect to α satisfies the
equations

(2) bi|j = 2τ
{(

1 + k1b
2
)
aij +

(
k2b

2 + k3
)
bibj

}
,

where k1, k2, k3 are constants such that (k2, k3) ̸= (0, 0) and τ = τ(x) is a
scalar function on V .

Yang ([25]) has discussed Douglas metrics on an open subset V of R2 written
as follows:

Theorem 2.2. Suppose that F = αϕ(s) be an (α, β)-metric on an open
subset V ⊂ R2. Further, suppose that F is not of Randers type, and β is not
parallel with respect to α. Let F be a Douglas metric on V . Then one of the
following two cases hold.

(i) The function ϕ(s) satisfies equation (1) with k2 ̸= k1k3 and β satisfies
equation (2).
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(ii) F can be written as

F = α̃± β̃2

α̃

with α̃ =
√
α2 − kβ2, β̃ = cβ, where k and c ̸= 0 are constants.

3. Invariant infinite series (α, β)-metric of Berwald type

In this section, we find necessary and sufficient condition for homogeneous
infinite series (α, β)-metric to be of Berwald type.

Let (M,F ) be a homogeneous Finsler space with G-invariant infinite series

(α, β)-metric F =
β2

β − α
. Then, M can be written as a coset space G/H,

where G = I(M,F ) is a Lie transformation group of M and H, the compact
isotropy subgroup of I(M,F ) at some point x ∈ M([8]). Let g and h be the
Lie algebras of the Lie groups G and H respectively. If g can be written as a
direct sum of subspace h and subspace m of g such that Ad(h)m ⊂ m ∀ h ∈ H,
then (G/H,F ) is called a reductive homogeneous manifold ([19]). Note that a
Finsler metric F can be viewed as a G-invariant Finsler metric on M . Thus, we
can say that any homogeneous Finsler manifold can be written as a coset space
of a connected Lie group with an invariant Finsler metric. Then using lemma
3.3 of ([22]), both α and β are G-invariant. Let ⟨ , ⟩ be the inner product on
m induced by the Riemannian metric α.

We can identify the tangent space TeH (G/H) of G/H at the origin eH = H
with m through the following map:

m −→ TeH (G/H)

v −→ d

dt
(exp(tv)H)|t=0.

Observe that for any v ∈ g, the vector field ṽ =
d

dt
(exp(tv)H)|t=0 is called the

fundamental Killing vector field generated by v ([14]).

Theorem 3.1. Let F =
β2

β − α
be a G-invariant infinite series metric on

a reductive homogeneous Finsler space G/H with a decomposition of the Lie
algebra g = h + m generated by a Riemannian metric α and a vector v ∈ m
such that Ad(H)v = v and ⟨v, v⟩ < 1. Then F is a Berwald metric if and only
if

(3)
〈
[u, v]m , w

〉
+

〈
[w, v]m , u

〉
= 0,

and

(4)
〈
[u,w]m , v

〉
= 0,
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for any u,w ∈ m.

Proof. By [18] and Lemma 2.1 of ([22]), we can say that infinite series (α, β)-
metric F is of Berwald type if and only if the invariant vector field v is parallel
with respect to α. Further, the vector field v is parallel with respect to α if
and only if

Γi
nj =

1

2

(〈
[vj , vn]m , vi

〉
+
〈
[vi, vn]m , vj

〉
+
〈
[vi, vj ]m , vn

〉)
= 0.

Therefore for all u,w ∈ m, we can write

(5)
〈
[u, v]m , w

〉
+
〈
[w, v]m , u

〉
+

〈
[u,w]m , v

〉
= 0.

Now, letting w = u in above equation, we get

(6)
〈
[u, v] , u

〉
= 0, ∀ u ∈ m.

We can also write the above equation for u+ w ∈ m, i.e.,

(7)
〈
[u+ w, v] , u+ w

〉
= 0, ∀ u,w ∈ m.

From equations (6) and (7), we get

(8)
〈
[u, v] , w

〉
+

〈
[w, v] , u

〉
= 0.

From equations (5) and (8), we get〈
[u,w] , v

〉
= 0.

Conversely, if equations (3) and (4) hold, then clearly equation (5) is satisfied
and so F is a Berwald metric. This completes the proof.

4. Invariant infinite series (α, β)-metric of Douglas type

In this section, we prove our main results obtained in 4.1 and 4.2.

Theorem 4.1. Let F =
β2

β − α
be a G-invariant infinite series (α, β)-metric

on the reductive homogeneous Finsler space G/H with a decomposition of the
Lie algebra g = h+m. Then F is a Douglas metric if and only if F is a Berwald
metric or F is a Douglas metric of Randers type.

Proof. Since Finsler space is homogeneous, it is sufficient to prove the result
at the origin eH. We consider two cases:
Case 1: dim(G/H) ≥ 3. Let F be a Douglas metric and suppose to contrary
that neither F is a Berwald metric nor F is of Randers type. We know that in
case of a homogeneous Finsler space, Riemannian length b is constant. There-
fore using theorem 2.1, we have

bn|n = 2τ(eH)
{(

1 + k1b
2
)
δnn +

(
k2b

2 + k3
)
bδnn bδnn

}
,
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i.e.,

(9) bn|n = 2τ(eH)
{(

1 + k1b
2
)
+

(
k2b

2 + k3
)
b2
}
.

Also, we have

(10) bn|n = 0.

From equations (9) and (10), we get

τ(eH)
{(

1 + k1b
2
)
+

(
k2b

2 + k3
)
b2
}
= 0.

Note that scalar function τ is constant, as α and β are both G−invariant. Also,
by the assumption that F is not a Berwald metric, we have τ ̸= 0.
Therefore

(11)
{(

1 + k1b
2
)
+
(
k2b

2 + k3
)
b2
}
= 0.

Now, using Shen’s lemma, the condition for infinite series metric F = αϕ(s) =

α

(
s2

s− 1

)
to be a Finsler metric reduces to

(12) ϕ(s)− sϕ
′
(s) +

(
b2 − s2

)
ϕ

′′
(s) =

s2

(s− 1)
2 +

(
b2 − s2

) 2

(s− 1)
3 > 0

Now, using equation (1) of theorem 2.1, we have
(13){

1 +
(
k1 + k2s

2 + k3
)
s2
} 2

(s− 1)
3 =

(
k1 + k2s

2
){ s2

s− 1
−

s
(
s2 − 2s

)
(s− 1)

2

}
,

simplifying, we get

(14)
2

(s− 1)
3 =

s2
(
k1 + k2s

2
)

(s− 1)
2 {1 + (k1 + k2s2 + k3) s2}

.

Using equation (14), we can write equation (12) as

0 <
s2

(s− 1)
2 +

(
b2 − s2

)
s2

(
k1 + k2s

2
)

(s− 1)
2 {1 + (k1 + k2s2 + k3) s2}

=
s2

(s− 1)
2

[
1 +

(
b2 − s2

) (
k1 + k2s

2
)

{1 + (k1 + k2s2 + k3) s2}

]

=
s2

(s− 1)
2

[
1 + k1b

2 +
(
k2b

2 + k3
)
s2

{1 + (k1 + k2s2 + k3) s2}

]
letting s = 0 in above inequality, we get

1 + k1b
2 > 0.

Also, 1 + k1s
2 > min

{
1, 1 + k1b

2
}
.

Therefore
1 + k1s

2 > 0, ∀ |s| ≤ b < b0.
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Letting s = b in equation (13) and using equation (11), we have

(15) k1 + k2b
2 = 0.

From equations (11) and (15), we have

(16) 1 + k3b
2 = 0.

From equations (15) and (16), we get values of k2 and k3 as follows:

k2 = −k1
b2

, k3 = − 1

b2
.

Substituting these values of k2 and k3 in equation (1), we get{
1 +

(
k1 −

k1s
2

b2
− 1

b2

)
s2
}
ϕ

′′
(s) =

(
k1 −

k1s
2

b2

){
ϕ(s)− sϕ

′
(s)

}
=⇒

[
b2 +

{
k1

(
b2 − s2

)
− 1

}
s2
]
ϕ

′′
(s) = k1

(
b2 − s2

){
ϕ(s)− sϕ

′
(s)

}
=⇒

{
b2

(
1 + k1s

2
)
− s2

(
1 + k1s

2
)}

ϕ
′′
(s) =

(
k1 −

k1s
2

b2

){
ϕ(s)− sϕ

′
(s)

}
=⇒

(
b2 − s2

) (
1 + k1s

2
)
ϕ

′′
(s) =

(
k1 −

k1s
2

b2

){
ϕ(s)− sϕ

′
(s)

}
,

we get the following second order ordinary differential equation

(17) ϕ
′′
(s) +

k1s

1 + k1s2
ϕ

′
(s)− k1

1 + k1s2
ϕ(s) = 0.

Next, we solve this equation as follows:

let P =
k1s

1 + k1s2
and Q = − k1

1 + k1s2
, note that P + sQ = 0. Therefore, let

ϕ(s) = vs be a solution of equation (17). Substituting the values ϕ(s) = vs,

ϕ
′
(s) = v + s

dv

ds
and ϕ

′′
= s

d2v

ds2
+ 2

dv

ds
in equation (17) to get the following

differential equation

s
d2v

ds2
+ 2

dv

ds
+

k1s

1 + k1s2

(
v + s

dv

ds

)
− k1vs

1 + k1s2
= 0

=⇒ s
d2v

ds2
+

2 + 3k1s
2

1 + k1s2
dv

ds
= 0

=⇒ d2v

ds2
+

2 + 3k1s
2

s (1 + k1s2)

dv

ds
= 0

=⇒ d2v

ds2
+

(
2

s
+

k1s

1 + k1s2

)
dv

ds
= 0,

putting
dv

ds
= z, we get

dz

ds
+

(
2

s
+

k1s

1 + k1s2

)
z = 0,
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i.e.,

dz

z
+

(
2

s
+

k1s

1 + k1s2

)
ds = 0,

integrating the above equation, we get

log z + log s2 + log
√
1 + k1s2 = log c1, for some constant c1,

i.e.,

zs2
√
1 + k1s2 = c1,

which further implies

dv =
c1

s2
√
1 + k1s2

ds,

putting s =
1

t
in above equation and integrating, we get

v = −
∫

c1t√
t2 + k1

dt+ c2, for some constant c2,

putting t2 + k1 = u2, and solving, we get

v = −c1u+ c2.

Finally, we get

ϕ(s) = vs = (−c1u+ c2)

= −sc1
√
t2 + k1 + c2s

= −c1
√
1 + k1s2 + c2s,

which shows that ϕ is of Randers type, we get a contradiction.
Hence the result is proved.
Case (ii): If dim (G/H) = 2, then using (i) of theorem (2.2), the result is
proved.

Theorem 4.2. Let F =
β2

β − α
be a G-invariant infinite series (α, β)-metric

on the reductive homogeneous Finsler space G/H with a decomposition of the
Lie algebra g = h+m. Further, suppose that g be perfect. Then F is a Douglas
metric if and only if it is a Riemannian metric.

Proof. In theorem 4.1, we have proved that homogeneous infinite series
(α, β)-metric is a Douglas metric if and only if it is a Berwald metric or Douglas
metric of Randers type.
Firstly, if F is a Douglas metric of Randers type, then it can be written as
F = α̃+ β̃, where α̃ is a G-invariant Riemannian metric and β̃ be a G-invariant
closed 1-form. Then there is a vector v ∈ m such that Ad(h)(v) = v ∀ h ∈ H,

which corresponds to β̃ with respect to inner product ⟨, ⟩ corresponding to α̃
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and this vector v satisfying the equation (4) (see [9]).
Therefore, we have

(18) [v, u] = 0 ∀ u ∈ h.

Also, since α̃ is G-invariant, therefore ⟨, ⟩ is Ad-invariant scalar product on m
([2]) and it satisfies the following condition:〈

[u,w]m , z
〉
+
〈
[u, z]m , w

〉
= 0 ∀ u ∈ h, w, z ∈ m.

In particular, we can write

(19)
〈
[u,w]m , v

〉
+
〈
[u, v]m , w

〉
= 0 ∀ u ∈ h, w ∈ m.

From equation (18) and (19), we get

(20)
〈
[u,w]m , v

〉
= 0 ∀ u ∈ h, w ∈ m.

Next, since Lie algebra g of G is perfect, i.e., g = [g, g].
Therefore, for vector v, there exist u,w ∈ g such that v = [u,w].
Using reductive decomposition g = h + m, we can write u = u1 + u2 and
w = w1 + w2, where u1, w1 ∈ m & u2, w2 ∈ h. Finally, we have〈

v, v
〉
=

〈
v, [u,w]m

〉
=

〈
v, [u1 + u2, w1 + w2]m

〉
= 0, using equations (4) and (20).

Therefore, v = 0. Hence F is a Riemannian metric.
If F is a Berwald metric, then theorem (3.1) implies that equation (4) holds.
Then, by following the similar steps as above, we show that F is a Riemannian
metric.
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