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HYPERCYCLICITY ON INVARIANT SUBSPACES

HENRIK PETERSSON

ABSTRACT. A continuous linear operator T : X — X’ is called hypercyclic
if there exists an = € X such that the orbit {T"z},>¢ is dense. We con-
sider the problem: given an operator T': X — X, hypercyclic or not, is
the restriction T}y to some closed invariant subspace Y C X" hypercyclic?
In particular, it is well-known that any non-constant partial differential
operator p(D) on H(C?) (entire functions) is hypercyclic. Now, if ¢(D)
is another such operator, p(D) maps ker ¢(D) invariantly (by commuta-
tivity), and we obtain a necessary and sufficient condition on p and ¢
in order that the restriction p(D) : ker g(D) — ker ¢(D) is hypercyclic.
We also study hypercyclicity for other types of operators on subspaces of

H(C).

1. Introduction

In all that follows, X denotes a real or complex separated locally convex
space, and L(X) the algebra of continuous linear operators 7' : & — & on
X. An operator T € L(X) is said to be hypercyclic if for some vector z € X,
called hypercyclic for T, the orbit {T"z},>¢ is dense. Thus, the existence
of a hypercyclic operator in L(X') requires that X is separable and, see [15],
infinite dimensional (unless X = {0}). For Fréchet spaces we have the following
well-known Hypercyclicity Criterion to establish hypercyclicity, see [1]:

Proposition 1. Let X be a separable Fréchet space and assume T € L(X)
satisfies the Hypercyclicity Criterion (HC): There exist dense subspaces Z,) C
X, and sequences (Sy) and (ng) of linear maps S, : Y — X and of natural
numbers ng, such that:

(1) T2 =0 for all z € Z,

(2) Spy =0 forally €Y,

(3) TSy =y forally € Y.
Then T is hypercyclic.

We say that T satisfies the HC with respect to a given sequence (n) C N, if
this sequence can be used in the criterion (i.e., in (1) and (3)). It is convenient
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to note that if T" satisfies the HC with respect to (ng), then T satisfies the HC
for any subsequence of (ny).
In this work we highlight the following two problems:

Problem 1. Given a hypercyclic operator T € L(X), can we find a closed
invariant subspace Y C X for which the restriction T|y of T to Y is also
hypercyclic?

Another problem is to go in the other direction:

Problem 2. Given a hypercyclic operator T' : ) — ), where Y is a proper
closed subspace of X, can we extend T to a hypercyclic operator T' € L(X)?

Note that, in the first problem, every hypercyclic vector z for T : X — X
must necessarily be outside of } (since Y is closed). Thus the hypercyclic
vectors for T and Ty (and thus those for T : Y — ¥ and T' in Problem 2)
are distinct. In other words, T'|y does not by no means inherit the hypercyclic
property of T'. Let us recall that every infinite dimensional separable Fréchet
space X’ supports a hypercyclic operator [2], and hence so does any infinite
dimensional closed subspace Y C X.

The following simple observation was one of the factors that motivated us to
pose Problems 1 and 2. Recall that the differentiation operators D; = 8/9z; are
hypercyclic on the Fréchet space H{C?) of d-variable entire functions provided
with the compact-open topology (in fact, they satisfy the HC with respect to
the full sequence (nx = k)). (See Proposition 3 for a more general result.)
Consider now the space H(C?) and the operators D; and Ds. We know that
D is hypercyclic on H(C?), and it is clear that Y = kerDy = H(C;) (=
{f(z1) : f € H(C)}) and D; maps Y invariantly. It follows now that D; is
hypercyclic on Y, since D is hypercyclic on H{C). Even more can be said. Y is
complemented in H(C?). Indeed, H(C?) = Z®) is a topological decomposition
where Z = 2o H(C?). (Recall that a subspace Y C X is said to be complemented
in X if there exists a subspace Z C X such that X = Z @ ), and where the
corresponding projector X — Y (or equivalently X — Z) is continuous. In this
case we say that X = Z @& Y is a topological decomposition of X'.) We notice
that D; maps Z invariantly, and if f = f(z;, z2) is a hypercyclic vector for D,
acting on H(C?), then 25 f € Z is evidently hypercyclic for Dy : Z — Z. Thus,
we can decompose H(C?) into a sum of two closed invariant subspaces Z,Y for
D, and for which the corresponding restrictions of D; are hypercyclic. At this
point the following question arises; if z € Z is hypercyclic for D; : Z — Z and
y€Yfor Dy :Y =Y, does h = z + y form a hypercyclic vector for D; acting
on the full space H(C?)? What we know is that for any given f € H(C?) and
neighborhood Uy of f, there exist n,m € N such that D}z + D"y € Uy. Our
question remains thus open, since we do not know if, for a general choice of z
and y, we always can choose n = m. However, we shall see (by Proposition 7)
that there exist vectors z,y for which this is always possible:
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Proposition 2. Y = H(C;) and Z = 2 H(C?) are closed invariant subspaces
for Dy : H(C?) — H(C?) with H({C?) = Z & Y (topological decomposition),
and the restrictions Dy : Y — Y and D, : Z — Z are hypercyclic. Further,
for any hypercyclic vector y € Y for D1 1 Y — Y, there exists a hypercyclic
vector z € Z for Dy : Z — Z such that z + y forms a hypercyclic vector for
D, : H(C?) —» H(C?), and the analogue holds if we start with a hypercyclic
vector z € Z for D1 : Z2 — Z.

The idea of this paper is to consider Problems 1 and 2 in the complex analysis
setting. In particular we approximate kernels to PDE:s in the following way. If
p(D) and ¢q(D) are partial differential operators with constant coefficients acting
on H(C%), then p(D) and ¢(D) commute. Consequently, p(D) maps ker (D)
invariantly, and in Section 2 we establish a necessary and sufficient condition on
the polynomials p and q in order that p(D) : ker ¢(D) — ker ¢(D) is hypercyclic
(Theorem 1). For any such pair p, g, there exists thus a solution f € H(C?) to
g(D)f = 0 such that any other homogeneous solution lies arbitrarily close to
some p(D)"f = p*(D)f. In Section 3, we construct certain closed subspaces
of H(C??) and prove that for a suitable choice E C H(C??), we can to every
operator 7' on H(C?) that satisfies the HC, associate a hypercyclic operator Tk
on E (Theorem 2). Further, when d = 1, Tg extends to a hypercyclic operator
T on the full space H(C?). In the last section, Section 4, we discuss extensions
of our obtained results, especially extensions to other spaces than H(C?).

2. On Problem 1

Recall that a convolution operator T on H(C?) is a continuous linear op-
erator that commutes with all translations 7, : f — f(z +a), a € C?, and
T is called trivial if it is a scalar multiple of the identity. The following well-
known result of Godefroy and Shapiro [5, Section 5] is some sort of basis for
our investigation in this section. Recall first that the algebra Exp(C?) of expo-
nential type functions is formed by all ¢ € H(C?) such that, for some M,r > 0,
lo(2)] < Me"lI#l where || - || denotes the Euclidian norm on C¢. In view of our
purposes, it is also convenient to recall that Exp(C?) can be identified with
H'(C?) via the bilinear form (f,¢) = 3, cna £ (0)(¥ (0)/a! (! = [T i)
on H x Exp.

Proposition 3 (Godefroy, Shapiro [5]). The map ¢ = (D) = e PaD?,
where p(2) = Y. ene Paz® and D* = D' --- D3, defines an algebra iso-
morphism between Exp(C?) and the set C of convolution operators on H(CY).
Any nontriviel convolution operator (D), i.e., v is not a constant mapping,
satisfies the HC (with respect to the full sequence) and is thus hypercyclic on
H(CY).
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Note that 7, = e,(D), where e,(2) = exp > z;a;, and (D) f(z) = (f, pe.).
In particular Proposition 3 yields that the operators in C commute and, ac-
cordingly, any ¢(D) € C maps any kernel ker (D), 1 € Exp(C?), invariantly.
This suggests, in view of Problem 1, the following definition:

Definition 1. Let ¢, € Exp(C?). We say that ¢(D) is 1-hypercyclic if the
restriction ¢(D) : ker /(D) — ker (D) is hypercyclic.

In the Introduction (Proposition 2) we noticed that D; is zeo-hypercyclic (d = 2)
and, in general, a y-hypercyclic operator T = (D) solves Problem 1 with
Y = kert(D). Let us consider some trivial cases. If ¢ = 0, then ker+(D) =
H and Proposition 3 gives the corresponding -hypercyclic operators. Next,
if 4 is a unit in Exp, ie., ¢y = Ae, where A4 # 0, then ¥(D) = Ar, and
ker9(D) = {0}. Thus every convolution operator is -hypercyclic in this case,
and especially this holds if ¥ is a constant # 0. Any (D) fails of course to
be ¢-hypercyclic, unless ¢ is a unit. Further, when d = 1 we know that no
nonconstant polynomial ¥ supports any -hypercyclic operator, for ker (D)
is then finite dimensional and # {0}. We shall improve this by proving that,
when d = 1, ¢ admits a y-hypercyclic operator if and only if ¢ = Ae, for some
A,aecC.

Noteworthy is that for arbitrary d, any kernel ker ¢/(D) is complemented in
H(C?). (This is a consequence of Taylor and Meise’s result from [9], saying
that any convolution operator has a continuous linear right inverse.)

After these preliminary observations, the objective is to give a necessary
and sufficient condition for p(D) to be #-hypercyclic in the case when 1 is a
polynomial p. By the discussion above, we may assume p is nonconstant.

Let us recall some terminology from analytic geometry (for an excellent
exposition of this theory we refer to [3]). A regular point of an analytic set A
inC¢, eg. A=Z(f) = {z: f(z) = 0} where f € H, is a point a € A for which
there exists a neighborhood U of a in C? such that A N U forms a complex
manifold. The set of regular points, regA, forms an open and dense subset of
A, and its connected components form complex manifolds.

Next, an analytic set A in C? is irreducible if it can not be written as a union
of two proper analytic subsets. An irreducible analytic subset A’ of an analytic
set A is called an irreducible component of A if every analytic subset A” C A
with A’ C A" is reducible. It follows that every irreducible analytic subset of A
is contained in an irreducible component. In fact, if U;R; is the decomposition
of regA into its connected components R;, then the irreducible components of
A are given by the sets R; (= closure in A, which, since any analytic set is
closed, equals the closure in C%). By the density of regA in A, we have that
A = U;R;, and this is the decomposition of A into irreducible components. In
particular, if p = p{* - - - pi= is the factorization of a nonconstant polynomial p
into irreducible factors p; with corresponding multiplicities r;, the irreducible
components of Z(p) are formed by Z(p;), i =1,...,m.
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If f € H, we denote by ords(a) the order of the zero a € Z(f). Thus ords(a)
is the largest natural number n for which D* f(a) = 0 whenever |a| < n.

Lemma 1. Let p = pi*---pim be the factorization of a polynomial p into
irreducible factors p; with corresponding multiplicities r; > 1. Let U C C¢
be any open set such that U meets every irreducible component Z(p;) of Z(p).
Then

(1)  Ey={qe.:acUNZ(p), qis a polynomial with degp < ordy(a)}
forms a total subset of ker p(D).

Progf. First of all, Ey is indeed a subset of ker p(D). For let ge, be any element
of Ey. Then p{(D)ge, = e,p(a + D)q. Now p(a + D) is a sum of derivatives
D* of order |a| > ord,(a), and so p(a + D)g = 0.

Next, we intend to prove the statement by induction over the sum ) r;.
For the starting value Y r; = m, we shall apply the following (cf. [10, Chapter
0.2]):

Sublemma. Let p = p; - - - b, be a polynomial with distinct irreducible factors
p; and assume U N Z(p;) # 0 for all 4, where U C C? is open. Then p - Exp =
{o:UnZ(p) C Z(p)}-

Proof of Sublemma. Assume first that U = C?. We must then prove that
p-Exp={p:Z(p) C Z(v)}. To this end we assume first that p is irreducible.
So suppose Z(p) C Z(p). We must prove that ¢ = py for some 9 € Exp.
But the proof of [18, Lemma 29.2] shows that ¢ = py for some (unique) entire
1 € H. Thus we only have to prove that v is of exponential type, which follows
by [18, Lemma 28.1]. Next, let p = p; - - - pm, where p; are distinct irreducible
polynomials, and assume Z(p) C Z(yp). Then Z(p;) C Z(p) for all i and so,
from what we just have proved, ¢ = p1¥y = poths = -+ = Py, for some
unique ¥; € Exp. By virtue of [13, Lemma 4] we conclude that p|y in Exp.
Hence the Sublemma holds when U = C?. '

Let now U C C?. From what we just have proved, it suffices to prove that
if ¢ € Exp vanishes on U N Z(p), then ¢ vanishes on Z(p). But let Zy be any
connected component of regZ(p). Then Z; is densely contained in some Z(p;).
Now, U meets Z(p;), and hence Zy, so Uy = U N Z; forms a nonempty open
set in the complex manifold Zy. But ¢ vanishes on Uy, and hence on all of Zj.
Since Zy was arbitrary we conclude that ¢|;esz(p) = 0 and finally, by density,
¢|z(p) = 0 and the Sublemma follows.

The Sublemma shows now that {e, : a € UN Z(p)} is dense in ker p(D) if
> r; = m. Indeed, assume ¢ € Exp >~ H' is orthogonal to {e, : a € UN Z(p)}.
Then 0 = {e,, v) = ¢(a) for all a € UN Z(p). Hence, ¢ € p- Exp which equals
ker p(D)1, since p : ¢ — pyp is the transpose of (the surjective operator [18,
Theorem 28.2]) p(D). Thus the lemma holds when )" 7; = m. Assume that
the lemma, is proved for } r; = m,...,n. Let now ) r; = n, we must then

prove the statement for p’ = pi'ps? ---plir where r{ = r; + 1. Assume ¢ is
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orthogonal to {ge, : @ € UNZ(p'), degq < ordy (a)}. But then ¢ is orthogonal
to the smaller set {ge, : a € UN Z(p), degg < ord,(a)} where p=pi* ---pim,
and so, by the inductive hypothesis, ¢ = pi for some ) € Exp. We must thus
prove that p;|¢ which, by the Sublemma, is equivalent to U N Z(p;) C Z(¢).
Solet a € UNZ(p;) be arbitrary and put v = ord,, (a). Then 1 < v < ord,(a)
and there exists a polynomial ¢ with deg¢ = v such that ¢{D)p1(a) # 0, while
go(D)p1(a) = 0 when deggo < v. Hence, by Leibniz’ Formula q(D)(fg) =
> (@ (D)f)Dg/a!, we obtain

0= (e, ) = ¢(D)p(a) = ¢(D)(pr¢)(a) = q(D)pi1(a) - ¥(a).
Thus 9(a) = 0 and we are done. O

Theorem 1. Let p = p['---pim be the factorization of a nonconstant poly-
nomial p into irreducible factors p; with corresponding multiplicities r; > 1.
A necessary and sufficient condition for o(D) to be p-hypercyclic is that the
restriction gp[z(pz.) is nonconstant for all 1.

Proof. First we prove the sufficient part, and we shall apply the HC. The proof
of the following Sublemma is due to Edgar Lee Stout [17].

Sublemma. Let ¢,p € Exp, where p is an irreducible polynomial. Then ¢| Z(p)
is nonconstant if and only if the sets ®; = {z : |p(2)] < 1} and P, = {2 :
lp(z)] > 1} meet Z(p).

Proof of Sublemma. Assume ®., does not meet Z(p). This means that ¢ is
bounded on Z(p), and we must prove the analogue of Liouville’s Theorem, that
¢ must be constant on Z(p). But Z(p) is an irreducible algebraic variety V
and hence, there exists a “projection” 7: V — C* that is an analytic cover [3,
Prop. 7.3.2]. Now the algebra H(V) of analytic functions on V (i.e., analytic
in a neighborhood of V), is integral over 7*H(CF) = {fom : f € H(CF)} C
H(V). (This is essentially Noether’s Normalization Theorem.) In particular
¢ € H(V) and so there is a monic polynomial m(z) = “ + g, 12"~ +- - -+ go,
with coefficients g; € n* H(CF), such that m(p) = 0. The coefficients g; are
symmetric functions in the values of ¢. For example, if p € V, go(p) = the
product of the values of ¢ on the fiber 7='(n(p)), taken with appropriate
multiplicities. Since ¢ is bounded on V, every g; must be bounded and hence,
by Liouville’s Theorem, they must be constant. But then, since V is irreducible
and ¢ is continuous, ¢ must be constant on V = Z(p).

That ®¢ N Z(p) = 0 implies that ¢ is constant on Z(p), follows from the
arguments above by considering the function 1/, which is analytic in a neigh-
borhood of Z(p) if @y N Z(p) = 0.

Since it is evident that (] Z(p) 18 nonconstant whenever ®y and ®., meet
Z(p), the Sublemma follows.

Hence, our hypothesis is equivalent to that ®y and ®, meet every irreducible
component Z(p;) of Z(p). But ®¢ and $, are open so, by Lemma 1, the sets
Z = span Eg, and Y = span Eg_, are dense in X = ker p(D). We prove that
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w{D)" = 0 pointwise on Z. It is enough to prove that o(D)"z%¢, — 0 for any
a and a € 5. But p(D)"2%, = 9™ (e + D)2™ and, with usual multi-index
notation,

"+ D)=y (g) 2>~ DBy (q).

BLa

Hence it suffices to prove that D*p™(a) — 0 (n — o) for any a and a € &y,
in fact, it is easier to prove the following more general:

Claim. Assume ¢ € Exp and |¢(a)| < 1. Then n” D*(p™){a) —= 0 (n — o0)
for all v > 0, ¥ € Exp and multi-indices a.

Proof of Claim. When |a| = 0 the statement is evidently true. Assume now
the claim holds for || = 0,...,m. Then for any ¢ < d and a with (o] = m:

n” D; D*[p™$)(a) = n* D*[ne™ YD + @™ Dibl(a) — 0
by the inductive hypothesis. Hence the claim.

Next we construct a right inverse S : Y — Y to (D) in the following
recursive way. (We apply the fact that the exponential polynomials 2%e,,
a € N, a € C?, form a linearly independent set in H.) Let a € ®., N Z(p).
Then we define Se, = e./p(a), and extend S linearly to span{e,}. Assume
now that S is defined on Y,., = span{z®e, : |a] < n} in such a way that S
forms a right inverse to ¢(D) on this set and S maps },., invariantly. Then if
lal =n+ 1 < ord,{a) we define

(%) = 2"eafila) — S(p(D) - p(a)]z"ea /(@)
= 2"ca/pla) - S(ealip(a + D) - p(a)]=*/i(a),

and extend S linearly to all of Va.rq1- In this way we obtain a right inverse to
@(D) on YV, = span{z®e, : |a] < ord,(a)}. By doing this for all a € ®o.NZ(p),
we obtain a right inverse S to ¢(D) on Ug_ nz(p)Va, which we finally extend
linearly to a right inverse S on ). By our construction S maps Y invariantly,
and trivially we have now ¢(D)"S™ — Idy pointwise. It remains thus only to
prove that S™ — 0 on Y, i.e., S"(z%¢,) — 0 for any a € Z(p) N &, and . To
prove this, we consider what happens with the lowest degree elements, i.e., when
|l is small. When |a| = 0 we have S™e, = e,/p(a)™ — 0. Next we derive that
S(z1e4) = z1ea/pla) — Dig(a)e./p(a)?. The general formula is S™(z1e,) =
z1eq/0(a)” ~nDyp(a)e, /p(a)™ T, which thus goes to zero. Computation gives

1 Dip{a)
S™(z%e,) = ——2%e,—2n Z1€4
(Fie) = Cragei€e "2t
Dip(a) o, (Dip(a)?
-TLW@G -+ (fl ~+ H)W as
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and
. 1 Diyp(a) Dagp(a)
S™(z120€,) Wz] Z2€q ~ nga(a)”“ 2260 — n‘P{a)"H #1€q
D1 Dyy(a) Dip(a)D2yp(a)
RO R O E

The general feature is as follows. For any n, S™(2%¢,) is a linear combination
of elements 2°e,, B < a, and the coefficient for 2°e, is of type q(n)O(|p(a)|™™)
where ¢ is a polynomial. From this we conclude that §" — 0 pointwise on Y.
Hence (D) is p-hypercyclic by the HC.

It remains to prove that it is necessary that ¢|z,,) is nonconstant for all 4.
To this end we recall that a necessary condition for an operator T' € L(X) to
be hypercyclic is that 7 — A has dense range for all scalars A, i.e., the adjoint
T’ lacks eigenvalues. Indeed, suppose y € X' is an eigenvector for T, with
corresponding eigenvalue A, and that T has a hypercyclic vector z. Then y # 0
and has thus dense range. The image of {T"z},>¢ must therefore be dense, but
{{T"z,y)}n = {\"{z,y)}~ is not dense, hence a contradiction. Now, by way
of contradiction, assume (D) is p-hypercyclic but ¢(z) = A for all z € Z(p;)
for some ¢ and A, we may assume ¢ = 1. Then @ — X vanishes on Z(p;) and is
thus divisible by p; (Sublemma of Lemma 1). We know that the set (1) with
U = C?, which we denote by A, is total in ker p(D). Since ¢(D) — A has dense
range, [p{D) — M)A must be total in ker p(D). But

[p(D) = A|AC B+ C = span{ge,:a€ Z(p), degq < ord,(a) — ord,, (a)}
+span{ges : a € Z(p) \ Z(p1), degq < ordy(a)},
where, in the definition of B, we tacitly assume ¢ = 0 in the case ord,(a) =
ordy, (a). To obtain a contradiction, it suffices to prove that there exists g €
Exp that is orthogonal to B+ |, but not to A (i.e., not to ker p(D)). We claim

that o = p* " 'ph2 - pim will due. Indeed, if a € Z(p) \ Z(p1), we have that
ordy, (a) = ord,(a) and so if ge, € C,

(gea, o) = g(D)po(a) = 0.

Next, if a € Z(p1), then ord,,(a) = ord,(a)—ord,, (a) which implies (geq, o) =
¢(D)po{a) = 0 if degq < ord,(a) — ordy, (a). Thus g is orthogonal to B + C.
Now, pick a € Z(p;) arbitrarily. Then ord,(a) > ordg,(a), so there exists a
polynomial ¢ with degg < ord,(a) but g(D)¢oe(a) # 0. But then ge, € A and
{geas po) = q(D)pola) # 0. .

Let HC(p) denote the set of all ¢ € Exp for which (D) is p-hypercyclic.
From Theorem 1 it is immediate that HC(pg) = HC(p) " HC(q) for any pair
p, g of nonconstant polynomials, or more generally:

Corollary 1. Let py,...,pm be nonconstant polynomials. Then

HC(p1-- pm) =MHC(p:) = HC(lem{p1, ..., Pm}),
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where lem{py, ..., pm} denotes the least common multiple of p1, ..., pm (which,
of course, is uniquely determined up to a constant factor).

Corollary 2. Let p,q be nonconstant polynomials in d > 2 variables. Then
HC{py C HClq) if and only if Z{q) C Z(p). Thus, HC(p) = HC|q) if and
only if Z(q) = Z(p).

Proof. Since neither Z(-) nor (by Theorem 1) HC(-) change if we only change
the multiplicities of the polynomial under consideration, we can assume p and
g have no multiple irreducible factors.

Suppose first that Z{q) C Z(p). Then every irreducible factor ¢' of ¢ is an
irreducible factor of p, and so HC(p) C HC{(g) by Theorem 1.

Next, assume HC'(p) C HC(g), i.e., by Theorem 1 (Corollary 1), HC(p) C
HC{q") for every irreducible factor ¢’ of ¢. This means that if ¢ € Exp is
constant on Z(¢'), then ¢ is constant on some component Z{p') of Z(p). We
must prove that ¢’ is a factor of p. Assume not. To obtain a contradiction we
must construct a ¢ that is constant on Z(g') but not on any Z(p'), where p/
is an irreducible factor of p. If ¢' is nonconstant on every Z(p'}), we may put
o = ¢'. If this is not the case, let p,...,pl, be the irreducible factors of p for
which ¢'{z(p;) is constant. Thus ¢'(z) = «; for all z € Z(p]) for some constants
«;. Since ¢ is distinct from every pl, a; # 0 for all 4.

Claim. Let d > 2 and ¢ be an irreducible polynomial that is not a factor of
a polynomial p. Then there exists a 1 € Exp such that p is not constant on

Z(q).

Proof of Claim. Assume the claim does not hold, i.e., for every 1 € Exp there
exist a constant a and ¢ € Exp such that ptp = a+qp. This means that image
of the operator T : C x Exp — Exp, defined by (o, ¢) — a + qp, contains the
ideal p- Exp = ker p{D)*. Hence

ker'T = Im T+ C (p- Exp)“L = kerp(D),

where T is the transpose of T' with respect to the duality (H, Exp) and the nat-
ural duality between C x Exp and Cx H. We derive that ' f = (f(0), ¢(D)f).
Hence, to obtain a contradiction, it suffices to prove that there exist a f € H
such that g(D)f = 0 and f(0) = 0 but p(D)f # 0. But since ¢ is not a
factor of p, there exists a € Z{q) \ Z(p). Since d > 2, the zeros are not iso-
lated so we may find two different points a,b € Z(¢) \ Z(p). Consider now
f = e, —ep. It is evident that ¢(D)f = 0 and f(0) = 0 hold, and it follows
that p(D)f = p(a)e, — p(bley # 0. Indeed, if pla)e, — p(b)ey = 0, the linearly
independence of e,, ¢, yields that p(a) = p(b) = 0, which is a contradiction.
Hence the claim.

By the claim there exist for every p}, a ¢; € Exp such that p/p} is not
constant on Z{p}). It follows now that

© = q (ip/P) + -+ bap/D, + 1)
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is a required function. |

Corollary 3. Let p be a nonconstant polynomial and assume (D) is p-
hypercyclic. Then ¢, (D}, where ¢, = v o @, is p-hypercyclic for any non-
constant v € Exp(C) such that ¢, € Exp. (In particular, ¢, € Exp if p,v are
polynomials or if v = az + b and ¢ is arbitrary.)

Proof. Let p' be any irreducible factor of p. Since ¢ is nonconstant and analytic
on regZ(p'), the image ¢(Z(p')) contains an open set. Thus, since v is noncon-
stant, ¥ cannot be constant on this set, which proves that , is nonconstant
on Z(p'). 0

When d = 1, ker p(D) is finite dimensional for any polynomial p and thus
HC(p) is empty. (We also see that no ¢ € Exp satisfies the necessary and
sufficient condition of Theorem 1 (since the irreducible components of Z(p) are
isolated points in C).) We shall now prove that HC(¢)) = @ in general, except
for the trivial cases.

Proposition 4. If d = 1, ¥ € Exp admits a y-hypercyclic operator (D) if
and only if = Ae®* for some A,a € C, i.e., if and only if keryp(D) = {0}, H.

Proof. If 4 = Ae,, then ker (D) = H (if A = 0) or ker (D) = {0} (if A # 0),
and so HC(¢) # 0 (See the discussion following Definition 1). So we must
prove the converse.

Assume ¢ is not of the form Ae®®. In particular this means that Z(¢)
is countable and not empty. Indeed, any zero free entire function is of the
form e, where g € H, and ef € Exp if and only if ¢g{z) = az + b. Now,
the key is to note that Lemma 1 (we assume U = C%) extends to the non
polynomial case. That is, we claim: {ge, : a € Z(¢), degq < ordy(a)} is
total in ker (D). To see this we show first that the Sublemma of Lemma, 1
extends in the sense that if ¢ € Exp has only simple zeros and Z(¢) C Z(¢)
(¢ € Exp), then ¢ divides ¢ in Exp. Indeed, any element ¢ € Exp can be
written in the form ¢(z) = Az™e®*II(1 — z/a,)e*/*, see [8, Chapter 2.1).
Here (a») are the zeros # 0 for ¢, multiple zeros are repeated in the sequence,
ordered so that |a,| < |ap+1]. From this it evident that Z{¢) C Z(p) implies
@ € ¢ - Exp = ker ¢(D)L. From this point the proof of our claim goes parallel
to that of Lemma 1.

Now, let v € Exp and let g¢ be any zero point of ¥, and put A = p(ap).
From the proof of Theorem 1, we recall that in order that ¢(D) is -hypercyclic,
[p(D) — A4, where A = {qe, : a € Z(¢), degq < ordy(a)}, must be total in
ker (D). That this is not the case follows, as in the proof of Theorem 1, by
the absence of terms 2%e,,, a = |af = ordy(ao) ~ 1, in span[p(D) —~ AJ4. O

3. On Problem 2

In the previous section we studied hypercyclicity of restrictions, and in this
section we consider the converse problem; the problem of finding hypercyclic
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extensions of hypercyclic operators on smaller spaces. We continue to work
with the space H(C?).

By || - |l» (r > 0) we denote the generating family of seminorms on H{C?)
defined by ||fll, = > ,5o |Hnfllr", where H,f denotes the n:th homoge-
neous part of the Taylor expansion of f € H(C?) about the origin and |p|| =
supy ;<1 [p(2)]. Next, E denotes the subspace of H(C? x C?) ~ H(C**) formed
by all f = f(z,£) of the form 3 o> | fn(€)(2,€)™/n! (fn € H(C?)) with absolute

convergence in H(C??), or equivalently, for which

(2) lim sup (W) o =

n—oo n!
for all » > 0. Recall that (z,£) = Y 2;¢;. Note that the functions f; are unique
for f € E, and we shall see that E forms an infinite dimensional closed (and
when d = 1, complemented) subspace of H(C??).
The main result in this section reads:

Theorem 2. Any operator T on H{C?) that satisfies the HC (e.g. any non-
trivial (D)), defines a hypercyclic operator Ty : E — E by

S @B o S @meEd

n!
n>0 n>a

Further, if d = 1, T extends to a hypercyclic operator T : H(C?) — H(C?).

We shall also establish an explicit hypercyclic extension Tr of Ty whend = 1
{see Corollary 5). However, before we prove Theorem 2, we shall give another
characterization of the space E, which is of independent interest. Further, our
proof of Theorem 2 goes via general results applicable for Problem 2.

We equip Exp = Exp(C?) with its standard inductive limit topology. That
is, by Exp, = Exp, (C?) we denote the Banach space of all functions ¢ € H =
H(C%) such that [Jo]» = sup, |p(z)|le~"I#l < oo, provided with the norm |- ||,..
Then Exp = U,»oExp, and we endow Exp with the corresponding inductive _
locally convex topology. It follows then that the identification Exp ~ H' {see
the previous section) is a topological isomorphism, where H' carries the strong
topology, and so Exp is a nuclear (because H is) DF-space. By L(Exp, H) we
denote the space of all continuous linear mappings Exp — H provided with
the topology of uniform convergence on bounded (or equivalently, since Exp
is nuclear, compact) sets. Since Exp is a DF-space and H a Fréchet space,
L(Exp, H) is a Fréchet space. In fact:

Proposition 5. Let, as before, e¢ = e{8) € Exp = Exp(C%), £ € C*. Then
the map T v+ f(z,£) = Tee(2) is a topological isomorphism between L(Exp, H)
and H(C*?).

Proof. Let T € L{Exp,H) and consider f(2,£) = Tec(z). We prove that
f € H(C?). Tt is clear that f(-,&) € H(C?) for any fixed £ € C¢. But we note
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that Tec(z) = Te,(£), and so f(z,+) € H(C?) for fixed z, and by Hartog’s
Theorem we conclude that f € H(C??). That i : T = f is one-to-one follows
from the fact that the elements e¢, £ € C¢, form a total set in Exp. Indeed,
since H is reflexive, Exp’ o~ H in the sense of the duality between H and Exp.
So if f € H is orthogonal to {e¢ : £ € C?}, then 0 = (f,e¢) = f(£) for all £ and
hence f = 0. This shows that {e : £ € C?} is total and thus i is injective. Next,
let f € H(C?) and define T by T'p(z) = (f(z,), ). It is easily checked that
T € L(Exp, H), and we note that iT(z,£) = (f(z,-),e¢) = f(2,€). Hence i is a
bijection and therefore an isomorphism by the Open-Mapping Theorem. O

It follows that the set of convolution operators on Exp(C?) is given by all
f(D) = 3 cna faD* (pointwise convergence in Exp) where f =3 fo2* €
H(C?). (Given a convolution operator T', we have that 7 = f(D) where
f(z) = Te,(0) = T1(z).) In particular we have that ‘f(D) is “multiplication
by f7 and f(D)g(D) = (f¢){D), so convolution operators on Exp commute.

Definition 2. An operator T € L(Exp, H) is said to be PDE-preserving for
aset A C Exp x H if Tker f(D) C kerp(D) for all {p, f}) € A. The set of
PDE-preserving operators for A is denoted by O(4A).

Note that O(A) forms a closed subspace of L(Exp, H) (=~ H(C??)) for any
set A. PDE-preserving operators, in other settings, have been studied in e.g.
11, 12, 13].

Proposition 6. Let H denote the set of homogeneous polynomials (d > 1
variables) and E = {(p,p) : p € H} C Exp x H. Then O(E) is formed by
all operators T' of the form T = 3" o Hy, o fo(D), where the sequence (fn)
satisfies (2) and is unique for T. In particular, E = O(E) in the sense of the
isomorphism in Proposition 5, and so E is closed.

Proof. By the fact that any f.(D) commutes with any p(D), p € H, and, if
p € H is m-homogeneous, p(D)H,, equals H,,_,,p(D) if n > m and 0 otherwise,
it is easily checked that any operator T' of the form ), ., Hy o fo(D) (where
(fn) satisfies (2)), belongs to O(E). In fact, the growth condition (2) implies
that )~ .o Hyo fo(D) converges pointwise and, by Banach-Steinhaus Theorem,
defines thus a continuous operator. Further, f,(D)es = fn(€)es, and hence
Tee(2) =3 fn(é){z, &)™ /nl. It remains thus only to prove that every T € O(E)
is of this form.

For any n € N and z € C?, ¢ = H,Tp(z) is a continuous linear functional
on Exp = Exp(C?). Hence, there exists a unique g,.. € H =~ Exp’ such that
(gn:z,p) = Hp,Tp(z) for all ¢ € Exp. We prove that g,., € (z,)" - H if
n > 1 and z # 0. Multiplication by (z,-)", f — (z,-)"f, is the transpose
of pn.(D) : Exp — Exp where p,.. is the homogeneous polynomial (z,-)"
(i.e., pr:-(D)y is the n:th directional derivative of ¢ € Exp along z). Now,
since T € O(E), it is evident that g... € kerp,,..(D)*, which equals Im(z, )™,
because pn., (D) is surjective {18, Theorem 28.2]. So, for everyn > 1 and z # 0,
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there exists a unique fn., € H with gn., = {2,-)™ fn../n!. Hence

Hy, friz(D)g(2) = ({2, )" /1l foiz (D)) = (fniz(2,7)" /1l 0) = HaTp(2)

if z # 0, and we note that the identity H, fn..(D)¢(2) = HaTp(2) holds even
if z = 0 (both sides vanish). We must prove that, for fixed n > 1, the f,.. are
independent of z # 0, i.e., equal to some f, € H. To this end we only have
to refer to the proof of Theorem 2 in [11], where an analogous step is solved.
When n = 0, gn., is independent of z and we put fo = go.. and notice that
Hyfo(D)p = HoT. Thus, for any ¢ € Exp we have

Ty = Z H,Ty = Zann(D)‘p

pointwise. It remain thus only to prove that (f,) satisfies the growth condition
(2). From the identity H, f,(D)ee = H,Te¢ (consider the (n+m)-homogeneous
part in £ of both sides) we derive that

(g

(3) <zu €>nfn,m(§) = (T(n—_*_m—)': <Z7 _>n>7

where fr.m = Hpmfn. Now, for any € > 0 we have that
B= {0 ™ (n+m)lin,meN, |igl =1}
forms a bounded set in Exp (it is contained and bounded in some Exp,}. Hence,

TB is bounded in H and so, for every r > 0 there exists M, = M,(¢) > 0 such
that

(4) nf%m < emrmyg,

for all £ on the unit sphere and all n,m > 0. Next we need the following simple
consequence of Cauchy’s estimates, whose proof we omit:

Sublemma. If ¢ € Exp,(C?), then |[(f,¢)| < Iflazerllipll- for all f € H(C).
We see now that (z,-)™ € Exp, with ||(z,)"|li < n!||z]|”. Hence, from (3),
(4) and the Sublemma, we conclude that
(2, 8)" fam (@] < ™™ Mapenlll2|”, €l =1.

If p and ¢ are an n and m-homogeneous polynomial respectively, we have
that [pfillall < (2¢)"*™|lpgll (see [4, p. 72]). This yields with p = (z,)" and

qg= fn,m:
B M amll < )"z, ) famll € (2e€)™ Mzenl||2|™
Accordingly, for any given r > 0 (take z with ||z]] = r in (5) and € = ¢, small
enough), we have
Pl = 3 1" I famllr™ < Mgenl(2eer)™ Y (2er)™ < Nuol
m>0 m>0
for some constant N = N(r,¢). Hence (f,) satisfies (2). O



916 HENRIK PETERSSON

Note that when d = 1, O(E) consists precisely of the continuous operators
T : Exp{C) — H(C) that, for every m, maps polynomials of degree at most m
onto polynomials of degree at most m.

Next we prove some general results related to our problem, Problem 2.

We recall that a sequence (T.)n>0 C L(X) is called hypercyclic if, for some
(hypercyclic) z € X, {Tha}n>o is dense, and the HC (Proposition 1) extends
to sequences of operators on a separable Fréchet space in the sense that we
may replace T™ by T, [1]. (Thus an operator T is hypercyclic if and only if the
sequence (T7), is.)

Proposition 7. Let X be o separable Fréchet space and assume we have a
topological decomposition X = 2@ Y. If S € L{(Z) and T € L(Y) satisfies the
HC with respect to some common sequence (ng) C N, then S&T : 2 +y —
Sz+ Ty forms a hypercyclic operator on X. In fact, for any hypercyclic vector
y € Y for (T™), there exists a hypercyclic vector z € Z for S such that z +y
is hypercyclic for S® T.

Proof. 1t suffices to prove the last part, i.e., given a hypercyclic vector y € Y for
(T™), there exists a hypercyclic vector z € Z for S such that z+y is hypercyclic
for S®T. Let (yi)i>o be a countable dense set in J. There exists a subsequence
(n;,5); of (ng) such that Ty — y; (j = 00). Consider now the denumerable
family of sequences (S™); C L(Z), i = 0,1,.... We know that (5"*);, and
hence every (S™7);, satisfies the HC. Accordingly, by [6, Prop. 3], (S™);,
i=0,1,... have a common hypercyclic vector z € Z. We prove that z + y is
a required hypercyclic vector for S@®T. Solet z =zz +2zy € 20 )Y = X be
arbitrary, and choose a continuous seminorm p and £ > 0 arbitrarily. Pick 43 so
that p(y;, —zy) < €/3. Next we may find a j. such that p(T™0iy—y,; ) <e/3
for all j > j.. Now z is hypercyclic for (S™7);, so there exists a jo > j. with
p(S™iodoz — z5) < g/3. The triangle inequality gives

p(S®T) ™0 (z+y)—x) < p(S™00 2=z z)+p(T™0 0y ~yi,) +p(yi —Ty) <&,
thus z + y is indeed a hypercyclic vector. (]

Thus, in order to extend an operator T' € L(Y) that satisfies the HC to a
hypercyclic operator on X, where ) C X is complemented, we only have to
construct an operator S € L(Z), where X = Z & Y, that satisfies the HC with
respect to a sequence for which 7" satisfies the HC.

Corollary 4. Let X be a separable Fréchet space and assume ) C X is comple-
mented in X and codim) = oo. Then every operator T € L(Y) that satisfies
the HC with respect to the full sequence (ny, = k), has a hypercyclic extension
T e L(X).

Proof. Let X = Z & Y be a topological decomposition. Since codim) = oo,
Z forms an infinite dimensional separable Fréchet space and hence supports
a hypercyclic operator S € L(Z) [2]. In fact, from the proof in [2], we may
choose S so that S satisfies the HC with respect to some sequence (ng). Now
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T satisfies the HC with respect to the full sequence and hence with respect to
(ng). Thus S @ T is a required extension by Proposition 7. O

Remark 1. In some settings, Corollary 4 can strengthened. Indeed, let X
be a separable Hilbert space and assume YV C X is closed and has infinite
codimension. Then Y is complemented and if X = Z & ) is a topological
decomposition, dim Z = oo. Thus Z ~ ¢5 and so Z supports (because 5 does)
an operator S € L(Z) that satisfies the HC with respect to the full sequence.
From this we conclude: Every hypercyclic operator T € L(Y), where Y is an
infinite codimensional closed subspace of a separable Hilbert space X, has a
hypercyclic eztension T € L(X).

Example 1. We recall that any kernel ker ¢/(D), ¥ € Exp, is complemented in
H = H(C?). We claim that ker /(D) has infinite codimension if ¢ # 0. Indeed,
the complement of Z(1)) is infinite for any such ¥, and we have that {é, =
e, + keryy(D) : a ¢ Z(¢)} forms a linearly independent set in H/ker (D).
For if .7 Aiéa, = 0, a; ¢ Z(¥), then " A;¥p(ai)es, = 0. But {e, : a € C*}
is a linearly independent set in H and so, since t(a;) # 0, 4; = 0 for all
i. Hence any operator 1" : ker (D) — kerv(D) that satisfies the HC with
respect to the full sequence admits a hypercyclic extension T e L(H). In
particular, let p be a nonconstant homogeneous polynomial. Then we have
that H = p- H @ kerp(D) is a topological decomposition of H [16]. Here
p denotes the homogeneous polynomial obtained from p by conjugating the
coefficients. Now, assume T : ker p(D) — ker p(D) satisfies the HC with respect
to the full sequence, and let S € L(H) be any operator that satisfies the HC.
(In particular we may have T' = ¢(D)|xerppy Where ¢ € Exp satisfies the
hypothesis of Theorem 1 with respect to p.) Then S induces an operator S on
pH, that satisfies the HC, by pf — pSf. Thus, by Proposition 7, S&T € L(H)
forms a hypercyclic extension of T'. (Note that all this latter is a generalization
of Proposition 2, which corresponds to the case p = § = 22, T = D |ker p, and
S = Dy, because in this case S = Slpa-)

Proposition 8. If d = 1, E is complemented in H(C?). In fact, H=E& F
forms a topological decomposition of H = H(C?), where F is formed by all
P =2 51 Pu(§)2™/n! where each py is a polynomial with degp, < n and the
sequence (p,) satisfies (2).

Proof. Since H = H(C?) is a Fréchet space and F is closed, it suffices, by
the Closed-Graph Theorem, to prove that F is closed and H = E @ F. Let
f € H. Then f can uniquely be written in the form > -, fn(£)2"/n! where
the sequence (f,) C H(C) satisfies (2). But each f, has a unique decompo-
sition fn(£) = pn + gn€™ where g, € H(C) and p, = .., ,(,m)(O)fm/m!
is a polynomial of degree < n if n > 1 and pg = 0. We prove that (g,)
and (p,) satisfy (2). Put h, = g." = 3,50 (m) (0)¢™/m!. We note that
hallr allr < llpnlle + lAalls = (| fall- for any 7 > 0. Hence (p,) and (hn),
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and therefore (g,), satisfy (2). This implies that g = Y. g,(£)2"¢"/n! and
P = Y. pa(£)2"/n! converge in H and belong to E and F respectively. Thus
f=g+pandso H=E+F. It is evident that EN F = {0} and hence
H = E & F holds. Finally, the fact that the space of polynomials of degree
< m is closed in H for all m, implies F is closed in H, and we are done. O

Proof of Theorem 2. 1t is clear that Tg indeed defines a continuous operator
on E, and we prove that Ty is hypercyclic. We shall apply the HC. Let Z,Y
be dense subspaces of H = H(C?) and S : Y — H linear maps for which for
some sequence (ng); T™ — 0 on Z and Sp — 0, T™ S, —» Idy on Y. By Z (Y
resp.) we denote the set in E of all finite sums > f,(£)(z,£)"/n! where f; € Z
(Y resp.). It is easily checked that Z and Y are dense in E, and T5* goes to
zero on Z. Next we define mappings S& : YV — E by 3 £2(6)(z,6)*/n!) —
Y (Skfn)(€)(z, &)™ /nl. Again it is easily seen that Tp*Sk — Idy and S& — 0
pointwise on ), and hence Ty satisfies the HC with respect to (ng).

It remains to prove that, when d = 1, T can be extended to a hypercyclic
operator on H(C?), and we shall apply Proposition 7. In view of Proposition 8,
we only have to construct an operator S € L(F) that satisfies the HC with
respect to the full sequence. Indeed, then Tg & S forms a required extension of
Tg as Tg satisfies the HC with respect to some sequence. We shall prove that
S defined by

©) > Ba(©2" /1l > 3 By ()"

n>1 n>1

is a required hypercyclic operator. Note that degp;,,; < n —1, and it is an
easy exercise to show that S € L(F). Let Z = Y be the dense subspace of F
formed by all >, pn(£)2"/n! € F where p, = 0 for all but a finite number
of n. It is then obvious that S™ — 0 pointwise on Z. (In fact, S*f =0
for all n sufficiently large if f € Z). Next we define a map p: P — P on
the space P of one-variable polynomials in the following way. Let p(z™) =
z"1/(n + 1), n > 0, and then extend p linearly. Note that p forms a right
inverse to the differentiation operator D on P, and p maps polynomials of
degree < n to polynomials of degree at most n+ 1. From this we conclude that
Yons1 P2/l = Y S o p(pn—1)(€)z"™/n! defines a right inverse R: Y — Y
to S. Hence, we only have to prove that R® — 0 pointwise on V. It suffices to
prove that R™y; ; — 0 for all 0 < i < j where y; ; = £'27 € Y. We derive that
Ry 5 = 1629 /[0 + n)i(j +n)!] = 0 (n = 0). i

Corollary 5. The operator S defined by (6) is hypercyclic on F C H(C?),
and Tp = Te ® S is a hypercyclic extension of Tg. If T satisfies the HC
with respect to (ng), then so does Tg (thus (Tg*)r is hypercyclic). For any
hypercyclic vector f for S ((Tg*)x resp.), there exists a hypercyclic vector g for
Tg (S resp.) such that f + g is hypercyclic for 1.
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Remark 2. From the proof of Theorem 2 we see that the theorem extends
in the following way: If (Tn)n>0 15 an equicontinuous sequence of operators
T, € L(H(C%)) that satisfy the HC with respect to some common sequence
(n4), then X £a(€)(2, )7/l > ST fn) (€){2, )" ! defines a hypercyclic op-
erator on E. (Note that equicontinuous means that there for every » > 0
exist M,R > 0 such that ||T,fll, < M||f||g for all n and f € H.) In
particular, any nontrivial ¢(D) satisfies the HC with respect to the full se-
quence, and we conclude that any sequence (¢n)n>0 C Exp \ C such that
Sup,, , |en(2)le""H2l < 0o for some v > 0, defines a hypercyclic operator on E

by 3 fn(€)(z, )" /nl = 3 (en (D) fn)(€)(z, )" /! on E.

4. Some extensions

The results of Section 2 extend to other spaces, i.e., we may replace H
by some other suitable function or power series space. Indeed, consider for
example the space C® = C=(R?) of all complex-valued smooth functions on
R? equipped with its usual Fréchet space topology [7, p. 44]. From Paley-
Wiener-Schwartz’ Theorem [7, p. 181], we know that the dual of C*° can be
identified with the space Exp = Exp(C?) of all ¢ € H such that (for some
C,r,n > 0) [p(2)] < C(1+]||z|)"e"m=Il| via the Fourier-Laplace transform X +»
©(z) = Me,) € Exp. Here imz = (imz;) € R? and e,(z) = e,(2) = e™4®:2),
(z,2) € R* x C¢. Thus C™ and Exp form a dual pair and, given ¢ € Exp,
we define the convolution operator ¢(0)f(z) = (f, ve,) on C*. It follows that
we obtain all the convolution operators on C* in this way [14, Prop. 2]. In
particular, if p is a polynomial, p(d) is the differential operator obtained by
replacing each variable in z; in p by i0; = i0/0z;. Moreover, Godefroy and
Shapiro’s result extends in the sense that any nontrivial convolution operator
(8} is hypercyclic on C* [14, Theorem 3]. Now, the key-lemma, Lemma 1,
remains true for any kernel ker p(9), and we have the following analogue of
Theorem 1:

Theorem 3. Let p = p}'---pi» be the factorization of a nonconstant polyno-
mial p into irreducible factors p; with corresponding multiplicities r; > 1. A
necessary and sufficient condition for the restriction ©(9) : ker p(d) — ker p(9)
to be hypercyclic is that o|z(,,) is nonconstant for all i.

Theorem 1 (and Theorem 3) extends also naturally to spaces such as the ring,
and Fréchet space, F of formal power series (d variables, complex coefficients)
equipped with the topology of convergence at each coefficient. (Replace ¢ in
Theorem 1 by a nonconstant polynomial, so (D) is a well-defined continuous
operator on F'.)

We conclude by considering another type of extension of our study. In [5]
the authors showed that an operator T acting on a separable Fréchet space is
chaotic, in the sense of Devaney, if and only if T is hypercyclic and has a dense
set of periodic points. (Recall that a periodic point is a point for which T"z = z
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for some n.) In the same paper they extended Proposition 3 by proving that
any nontrivial convolution operator on H(C?) is in fact chaotic. Thus, we are
led to the question; is the restriction ¢(D)|ier p(py of any convolution operator
(D), satisfying the hypothesis of Theorem 1 with respect to p, in fact chaotic?
We shall not here give a full treatment of this problem, this chaotic problem
seems to be more delicate in the sense that multiple factors in the polynomial
p affects. However, we prove the following:

Theorem 4. Let p = pg---pm be a nonconstant polynomial whose irreducible
factors p; are distinct. Then p(D)|xer p(p) 18 chaotic if and only if |z, s
nonconstant for all 1.

Proof. We must prove that ¢(D)|ierp(py has a dense set of periodic points
provided ¢|z(p,) is nonconstant for all 7. In particular we have that d > 2. We
know, from the proof of Lemma 1, that ker p(D)+ = {4 : Z(p) C Z(+))}. Thus
we must show that there exists a set of periodic points for ¢(D) in ker p(D)
such that if ¢ € Exp is orthogonal to this set, then 1) vanishes on Z(p). From
this point the proof goes very close to that of [5, Theorem 6.2], however, we
give some details. Assume first that d = 2. Our hypothesis on ¢ implies that
for every i there is a point a; € regZ(p;) such that |p(a;)] = 1. Since every
regZ(p;) forms a one dimensional complex manifold, there exist for every %
a neighborhood U; of a; in regZ(p;), a domain ©; C C and a biholomorphic
map u; : ; — U; such that p; = pou; € H(Q;). Now, ¢;(£;) meets the
unit circle, and we may find an open relatively compact set G; C Q; such that
©:(G;) meets the unit circle. Since a holomorphic map is open, ;(G;) contains
a nontrivial arc of the unit circle, and hence contains infinitely many roots of
unity. Thus, there exists an infinite set E; C G; for which ¢;(E;) = o(u;(E))
is formed by roots of unity. We now claim that P = U;{e, : a € u;(E;)} is a
total set of periodic points in ker p(D) and hence, since linear combinations of
periodic points are again periodic, its span is the required dense set of periodic
points. Indeed, if ¢ is orthogonal to P then ¢ vanishes on every u;(F;). But,
since G; is relatively compact, E; has a limit point in ;. Hence 1y ou; = 0 and
so ¢ vanishes on every regZ(p;). Thus 1|z(,) =0 and our claim follows.
When d > 2 we only have to refine the proof in the same way as in the proof
in [5]. 0
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