DOI QR코드

DOI QR Code

HYPERCYCLICITY ON INVARIANT SUBSPACES

  • Published : 2008.07.31

Abstract

A continuous linear operator $T\;:\;X{\rightarrow}X$ is called hypercyclic if there exists an $x\;{\in}\;X$ such that the orbit ${T^nx}_{n{\geq}0}$ is dense. We consider the problem: given an operator $T\;:\;X{\rightarrow}X$, hypercyclic or not, is the restriction $T|y$ to some closed invariant subspace $y{\subset}X$ hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on $H({\mathbb{C}}^d)$ (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) $\rightarrow$ ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of $H({\mathbb{C}}^d)$.

Keywords

References

  1. J. Bes and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94-112 https://doi.org/10.1006/jfan.1999.3437
  2. J. Bonet and A. Peris, Hypercyclic operators on non-normable Frechet spaces, J. Funct. Anal. 159 (1998), no. 2, 587-595 https://doi.org/10.1006/jfan.1998.3315
  3. E. M. Chirka, Complex Analytic Sets, Mathematics and its Applications (Soviet Series), 46. Kluwer Academic Publishers Group, Dordrecht, 1989
  4. S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 1999
  5. G. Godefroy and J. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269 https://doi.org/10.1016/0022-1236(91)90078-J
  6. K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345-381 https://doi.org/10.1090/S0273-0979-99-00788-0
  7. L. Hormander, The Analysis of Linear Partial Differential Operators I (2nd edition), Springer-Verlag, 1990
  8. B. Malgrange, Existence et approximation des solutions des equations aux derivees partielles et des equations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955), 271-355
  9. R. Meise and B. A. Taylor, Each nonzero convolution operator on the entire functions admits a continuous linear right inverse, Math. Z. 197 (1988), no. 1, 139-152 https://doi.org/10.1007/BF01161635
  10. V. P. Palamodov, Linear Differential Operators with Constant Coefficients, Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970
  11. H. Petersson, The PDE-preserving operators on nuclearly entire functions of bounded type, Acta Math. Hungar. 100 (2003), no. 1-2, 69-81 https://doi.org/10.1023/A:1024604100956
  12. H. Petersson, Rings of PDE-preserving operators on nuclearly entire functions, Studia Math. 163 (2004), no. 3, 217-229 https://doi.org/10.4064/sm163-3-2
  13. H. Petersson, PDE-preserving properties, J. Korean Math. Soc. 42 (2005), no. 3, 573-597 https://doi.org/10.4134/JKMS.2005.42.3.573
  14. H. Petersson, Hypercyclic subspaces for Frechet space operators, J. Math. Anal. Appl. 319 (2006), no. 2, 764-782 https://doi.org/10.1016/j.jmaa.2005.06.042
  15. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22 https://doi.org/10.4064/sm-32-1-17-22
  16. H. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), no. 6, 513-537 https://doi.org/10.1112/blms/21.6.513
  17. E. L. Stout, Private communication
  18. F. Treves, Locally Convex Spaces and Linear Partial Differential Equations, Die Grundlehren der mathematischen Wissenschaften, Band 146, Springer-Verlag New York, Inc., New York, 1967