• Title/Summary/Keyword: Internal voltage

Search Result 659, Processing Time 0.028 seconds

Input-Output Feedback Linearizing Controller Design of a Power System Using a Modified Voltage Equation (수정한 전압방정식을 이용한 발전기의 입출력 귀환선형화 제어기 설계)

  • Kim, Seok-Kyoon;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.183-185
    • /
    • 2006
  • This paper presents a SISO nonlinear controller for the power system consisting of a synchronous generator connected to an infinite bus. The proposed controller is based on input-output feedback linearization, with a modified version of the terminal voltage equation used as the output. The resulting closed-loop has no internal dynamics, and thus stability is guaranteed. The controller performance is seen to be effective through simulations.

  • PDF

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

A Study on the Improved Load Sharing rate in Paralleled Operated Lead Acid Battery by Using Microprocessor (마이크로 프로세서를 이용한 축전지의 병렬 운전 부하분담률 개선에 관한 연구)

  • 이정민
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.493-497
    • /
    • 2000
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy without a mechanical process. Unit cells are connected in series to obtain the required voltage while being connected in parallel to organize capacity for load current. Because the voltage drop down in one set of battery is faster than in two one it may result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However when the system being shutdown. However when the system being driven in parallel a circular-current can be generated,. It is shown that as a result the new batteries are heated by over-charge and over-discharge and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper we can detect the unbalance current using the microprocessor and achieve the balance current by adjusting resistance of each set, The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

Study on the Variation of Electrical Internal Resistance for Thermoelectric Generator Module with Operating Temperature (운전 온도에 따른 열전발전 모듈의 전기적 내부 저항 변화에 대한 연구)

  • Kim, Yun-Ho;Kim, Myung-Kee;Kim, Seo-Young;Rhee, Gwang-Hoon;Um, Suk-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • An analysis model considered the manufacturing factors and the pellet size has been developed in order to predict the performance characteristics of thermoelectric modules as generators. Since the electrical internal resistance has a significant role in the performance of thermoelectric modules, the variations of electrical internal resistance with operating temperature are experimentally measured. The modified electrical internal resistance calculated from an experimental correlation is applied to the analysis model. To verify the modified analysis model, the output voltage, output current and output power are compared with experimental results for the operating temperature conditions of $T_h=85^{\circ}C$ and ${\Delta}T=40^{\circ}C$. The modified analysis shows a good agreement with the experimental results in terms of the output voltage, current, and power.

Fabrication and Characteristics of z-cut Ti:LiNbO$_3$ Internal Chip for Optical Modulator (z-cut $Ti:LiNbO_3$광변조기 내부칩 제작 및 특성평가)

  • Kim, Seong-Ku;Yoon, Hyung-Do;Lee, Han-Young;Park, Gye-Choon;Lee, Jin;Kang, Sung-Jun
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.319-322
    • /
    • 1999
  • In this paper, we report characteristics of a internal chip of LiNbO$_3$ modulator with low-driving-voltage at 150nm wavelength. A Ti diffusion method for LiNbO$_3$ optical waveguide and a buffer layer for improving phase velocity mismatch between optical and microwave waves were employed. The traveling-wave coplanar waveguide electrode of 35mm is used for reducing the driving voltage. From this work, wideband modulation of 10㎓ and low-driving voltage of 3.9volts are realized.

  • PDF

Propagation Characteristics of Surge Generated due to Internal Arc Discharge in Superconducting Magnet (초전도 마그네트 시스템 내부 아크방전에 의한 발생 서어지의 전파특성)

  • Choi, Byoung-Ju;Suehiro, Junya;Hara, Masanori
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1904-1906
    • /
    • 1996
  • Transient voltage distribution tests are carried out to evaluate effects of a high frequency oscillating voltage generated in a superconducting magnet as a result of the arc discharge extinction. Especially, the effects of temperature and conduction state of the magnet conductor on surge behavior are carefully investigated. Based on the results of simulation tests, it is shown that internal voltage waveforms are influenced by its transmission along the superconducting wire and reflection at the terminal and that attenuation process of the waveforms depends considerably on the conductor resistance which decreases with lowering the temperature.

  • PDF

Analysis of Electric Field Distribution of High Voltage Polymeric Bushing with Structure (초고압 폴리머 부싱의 구조에 따른 전계분포 해석)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.489-490
    • /
    • 2008
  • This paper describes the analysis of electric field distribution of high voltage polymeric bushing with structure. The high voltage bushing consists of FRP tube and housing made of LSR. The field control can be achieved by means of the design of such internal field shaper and top corona ring as grading electrodes. In accordance, the optimized design uses both internal and external elements for electric stress grading at critical parts of the bushing. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymeric bushing.

  • PDF

Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer (전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘)

  • 박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

Analytic Breakdown Voltage Model of LDMOS with Internal Field Ring (내부 전계 링을 갖는 LDMOS의 해석적 항복전압 모델)

  • 오동주;염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.377-380
    • /
    • 2003
  • An Analytic breakdown voltage model of LDMOS with internal field ring is proposed. The model is a simple analytic formula which has variables such as the dimension of drift retion, the position and doping concentration of the internal field ring, the thickness and permittivity of oxide. By comparing the results from two dimensional TCAD simulation, the proposed model explains the breakdown phenomena fairly well.

  • PDF