• Title/Summary/Keyword: Interface trap

Search Result 229, Processing Time 0.029 seconds

Analysis of Nitride traps in MONOS Flash Memory (MONOS 플래시 메모리의 Nitride 트랩 분석)

  • Yang, Seung-Dong;Yun, Ho-Jin;Kim, Yu-mi;Kim, Jin-Seob;Eom, Ki-Yun;Chea, Seong-Won;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.59-63
    • /
    • 2015
  • This paper discusses the capacitance-voltage method in Metal-Oxide-Nitride-Oxide-Silicon (MONOS) devices to analyzed the characteristics of the top oxide/nitride, nitride/bottom oxide interface trap distribution. In the CV method, nitride trap density can be calculated based on the program characteristics of the nitride thickness variations. By applying this method, silicon rich nitride device found to have a larger trap density than stoichiometric nitride device. This result is consistent with previous studies. If this comparison analysis can be expected to result in improved reliability of the SONOS flash memory.

Trap-related Electrical Properties of GaN MOSFETs Through TCAD Simulation

  • Doh, Seung-Hyun;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.150-155
    • /
    • 2018
  • Three different structures of GaN MOSFETs with trap distributions, trap levels, and densities were simulated, and its results were analyzed. Two of them are Schottky barrier MOSFETs(SB-MOSFETs): one with a p-type GaN body while the other is in the accumulation mode MOSFET with an undoped GaN body and regrown source/drain. The trap levels, distributions and densities were considered based on the measured or calculated properties. For the SB-MOSFET, the interface trap distribution affected the threshold voltage significantly, but had a relatively small influence on the subthreshold swing, while the bulk trap distribution affects the subthreshold swing more.

Mechanism for stress-induced interface degradations in ultrathin Si oxynitrides (초박막 Si oxynitride의 스트레스에 의한 계면 열화 메커니즘)

  • Lee, Eun-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.93-93
    • /
    • 2007
  • We present a mechanism for stress-induced interface degrdadations through ab initio pseudopotential calculations. We find that N interstitials at the interface create various defects levels in the Si band gap, which range from the mid gap to the conduction band of Si. The level positions are dependent on the configuration of oxygen toms around the N interstitial. On the other hand, the mid-gap level caused by Pb center is possibly removed by substitution of a N atom for a threefold-coordinated Si atom in the defect. Our calculations explain why interface state generations are enhanced in Si oxynitride, especially near conduction band edge of Si, although densities of Pb center are reduced.

  • PDF

Characteristics of Schottky Diode and Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are evaluated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are determined as $1.5{\times}10^{13} traps/cm^2$, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by $N_2$ annealing. Based on the diode characteristics, various sizes of erbium- silicided/platinum-silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from 20 m to 35nm. The manufactured SB-MOSFETs show excellent drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are compatible with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.

SiC/SiO2 Interface Characteristics in N-based 4H-SiC MOS Capacitor Fabricated with PECVD and NO Annealing Processes (PECVD와 NO 어닐링 공정을 이용하여 제작한 N-based 4H-SiC MOS Capacitor의 SiC/SiO2 계면 특성)

  • Song, Gwan-Hoon;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.447-455
    • /
    • 2014
  • In this research, n-based 4H-MOS Capacitor was fabricated with PECVD (plasma enhanced chemical vapor deposition) process for improving SiC/$SiO_2$ interface properties known as main problem of 4H-SiC MOSFET. To overcome the problems of dry oxidation process such as lower growth rate, high interface trap density and low critical electric field of $SiO_2$, PECVD and NO annealing processes are used to MOS Capacitor fabrication. After fabrication, MOS Capacitor's interface properties were measured and evaluated by hi-lo C-V measure, I-V measure and SIMS. As a result of comparing the interface properties with the dry oxidation case, improved interface and oxide properties such as 20% reduced flatband voltage shift, 25% reduced effective oxide charge density, increased oxide breakdown field of 8MV/cm and best effective barrier height of 1.57eV, 69.05% reduced interface trap density in the range of 0.375~0.495eV under the conduction band are observed.

Trap Generation during SILC and Soft Breakdown Phenomena in n-MOSFET having Thin Gate Oxide Film (박막 게이트 산화막을 갖는 n-MOSFET에서 SILC 및 Soft Breakdown 열화동안 나타나는 결함 생성)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.1-8
    • /
    • 2004
  • Experimental results are presented for gate oxide degradation, such as SILC and soft breakdown, and its effect on device parameters under negative and positive bias stress conditions using n-MOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both interface and oxide bulk traps are found to dominate the reliability of gate oxide. However, for positive gate voltage, the degradation becomes dominated mainly by interface trap. It was also found the trap generation in the gate oxide film is related to the breakage of Si-H bonds through the deuterium anneal and additional hydrogen anneal experiments. Statistical parameter variations as well as the “OFF” leakage current depend on both electron- and hole-trapping. Our results therefore show that Si or O bond breakage by tunneling electron and hole can be another origin of the investigated gate oxide degradation. This plausible physical explanation is based on both Anode-Hole Injection and Hydrogen-Released model.

Simulation of Threshold Voltages for Charge Trap Type SONOS Memory Devices as a Function of the Memory States (기억상태에 따른 전하트랩형 SONOS 메모리 소자의 문턱전압 시뮬레이션)

  • Kim, Byung-Cheul;Kim, Hyun-Duk;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.981-984
    • /
    • 2005
  • This study is to realize its threshold voltage shift after programming operation in charge trap type SONOS memory by simulation. SONOS devices are charge trap type nonvolatile memory devices in which charge storage takes place in traps in the nitride-blocking oxide interface and the nitride layer. For simulation of their threshold voltage as a function of the memory states, traps in the nitride layer have to be defined. However, trap models in the nitride layer are not developed in commercial simulator. So, we propose a new method that can simulate their threshold voltage shift by an amount of charges induced to the electrodes as a function of a programming voltages and times as define two electrodes in the tunnel oxide-nitride interface and the nitride-blocking oxide interface of SONOS structures.

  • PDF

Frequency-dependent C-V Characteristic-based Extraction of Interface Trap Density in Normally-off Gate-recessed AlGaN/GaN Heterojunction Field-effect Transistors

  • Choi, Sungju;Kang, Youngjin;Kim, Jonghwa;Kim, Jungmok;Choi, Sung-Jin;Kim, Dong Myong;Cha, Ho-Young;Kim, Hyungtak;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.497-503
    • /
    • 2015
  • It is essential to acquire an accurate and simple technique for extracting the interface trap density ($D_{it}$) in order to characterize the normally-off gate-recessed AlGaN/GaN hetero field-effect transistors (HFETs) because they can undergo interface trap generation induced by the etch damage in each interfacial layer provoking the degradation of device performance as well as serious instability. Here, the frequency-dependent capacitance-voltage (C-V) method (FDCM) is proposed as a simple and fast technique for extracting $D_{it}$ and demonstrated in normally-off gate-recessed AlGaN/GaN HFETs. The FDCM is found to be not only simpler than the conductance method along with the same precision, but also much useful for a simple C-V model for AlGaN/GaN HFETs because it identifies frequency-independent and bias-dependent capacitance components.