DOI QR코드

DOI QR Code

Trap-related Electrical Properties of GaN MOSFETs Through TCAD Simulation

  • Doh, Seung-Hyun (School of Electronics Engineering, College of IT Engineering, Kyungpook National University) ;
  • Hahm, Sung-Ho (School of Electronics Engineering, College of IT Engineering, Kyungpook National University)
  • Received : 2018.05.23
  • Accepted : 2018.05.29
  • Published : 2018.05.31

Abstract

Three different structures of GaN MOSFETs with trap distributions, trap levels, and densities were simulated, and its results were analyzed. Two of them are Schottky barrier MOSFETs(SB-MOSFETs): one with a p-type GaN body while the other is in the accumulation mode MOSFET with an undoped GaN body and regrown source/drain. The trap levels, distributions and densities were considered based on the measured or calculated properties. For the SB-MOSFET, the interface trap distribution affected the threshold voltage significantly, but had a relatively small influence on the subthreshold swing, while the bulk trap distribution affects the subthreshold swing more.

Keywords

References

  1. H. C. Lee, S. Y. Hyun, H. I. Cho, C. Ostermaier, K. W. Kim, S. I. Ahn, K. I. Na, J. B. Ha, D. H. Kwon, C. K. Hahn, S. H. Hahm, H. C. Choi, and Jung-Hee Lee, "Enhanced Electrical Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistor with p-GaN Back Barriers and Si Delta-Doped Layer", Jpn. J. Appl. Phys., Vol. 47(4S), pp. 2824-2827, 2008. https://doi.org/10.1143/JJAP.47.2824
  2. V. A. Dmitriev, K. G. Irvine, C. H. Carter Jr., N. I. Kuznetsov, and E. V. Kalinina, "Electric breakdown in GaN p?n junctions", Appl. Phys. Lett., Vol. 68(2), pp. 229-231, 1996. https://doi.org/10.1063/1.116469
  3. M. Micovic, A. Kurdoghlian, P. Hashimoto, M. Hu, M. Antcliffe, P. J. Willadsen, W. S. Wong, R. Bowen, I. Milosavljevic, A. Schmitz, M. Wetzel, and D. H. Chow, "GaN HFET for W-band power applications", Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 5-7, San Francisco, U.S.A., 2006.
  4. M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, "Metal semiconductor field effect transistor based on single crystal GaN", Appl. Phys. Lett., Vol. 62(15), pp. 1786-1787, 1993. https://doi.org/10.1063/1.109549
  5. Y.?F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, "Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors", Appl. Phys. Lett., Vol. 69(10), pp. 1438-1440, 1996. https://doi.org/10.1063/1.117607
  6. M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a $GaN/Al_xGa_{1-x}N$ heterojunction," Appl. Phys. Lett., Vol. 63(9), pp. 1214-1215, 1993. https://doi.org/10.1063/1.109775
  7. K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, "Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate", IEEE Electron Device Lett., Vol. 31(3), pp. 192-194, 2010. https://doi.org/10.1109/LED.2009.2039024
  8. H. B. Lee, H. I. Cho, H. S. An, Y. H. Bae, M. B. Lee, J. H. Lee, and S. H. Hahm, "A normally off GaN n-MOSFET with Schottky-barrier source and drain on a Si-auto-doped p-GaN/Si," IEEE Electron Device Lett., Vol. 27(2), pp. 81-83, 2006. https://doi.org/10.1109/LED.2005.862675
  9. C. J. Lee, "GaN SB-MOSFET and MSM UV photodetector for UV sensor array", M. S. thesis, Kyungpook National University, 2011.
  10. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett., Vol. 48(5), pp. 353-355, 1986. https://doi.org/10.1063/1.96549
  11. H. Gotoh, T. Suga, H. Suzuki, and M. Kimata, "Low temperature growth of gallium nitride", Jpn. J. Appl. Phys., Vol. 20(7), pp. L545-L548, 1981. https://doi.org/10.1143/JJAP.20.L545
  12. M. Koike, T. Kimura, H. Kawaguchiya, A. Shimazaki, and S. Takeno, "Accurate TEM analysis of electron beam induced defects in GaN combined with defect-eliminated specimen preparation technique", Microsc. Microanal., Vol. 14(2002), pp. 2-3, 2006.
  13. M. A. Reshchikov, and H. Morkoc, "Luminescence properties of defects in GaN", J. Appl. Phys., Vol. 97(6), pp. 061301-1-061301-95, 2005. https://doi.org/10.1063/1.1868059
  14. S. B. Bae, K. W. Kim, Y. S. Lee, J. H. Lee, Y. Bae, and S. Cristoloveanu, "Capacitance-voltage characterization of surface-treated $Al_2O_3$/GaN metal-oxide-semiconductor structures", Microelectron. Eng., Vol. 109, pp. 10-12, 2013. https://doi.org/10.1016/j.mee.2013.03.108
  15. W. Huang, T. Khan, and T. P. Chow, "Comparison of MOS capacitors on n- and p-type GaN", J. Electron. Mater., Vol. 35(4), pp. 726-732, 2006. https://doi.org/10.1007/s11664-006-0129-6
  16. D. K. Kim, D. S. Kim, S. J. Chang, C. J. Lee, Y. Bae, S. Cristoloveanu, J. H. Lee, and S. H. Hahm, "Performance of GaN Metal-Oxide-Semiconductor Field-Effect Transistor with Regrown $n^+$-Source/Drain on a Selectively Etched GaN", Jpn. J. Appl. Phys., Vol. 52(6R), pp. 061001-1-061001-5, 2013. https://doi.org/10.7567/JJAP.52.061001
  17. SILVACO International Technical Staff, ATLAS User's Manual, SILVACO International, pp. 1009-1014, 2014.
  18. SILVACO International Technical Staff, ATLAS User's Manual, SILVACO International, pp. 1077-1083, 2014.
  19. SILVACO International Technical Staff, ATLAS User's Manual, SILVACO International, pp. 734-735, 2014.