DOI QR코드

DOI QR Code

PECVD와 NO 어닐링 공정을 이용하여 제작한 N-based 4H-SiC MOS Capacitor의 SiC/SiO2 계면 특성

SiC/SiO2 Interface Characteristics in N-based 4H-SiC MOS Capacitor Fabricated with PECVD and NO Annealing Processes

  • 투고 : 2014.10.02
  • 심사 : 2014.11.07
  • 발행 : 2014.12.31

초록

본 연구에서는 4H-SiC MOSFET의 주요 문제점인 $SiC/SiO_2$ 계면의 특성을 향상시키기 위해 PECVD (plasma enhanced chemical vapor deposition) 공정을 이용하여 n-based 4H-SiC MOS Capacitor를 제작하였다. 건식 산화 공정의 낮은 성장속도, 높은 계면포획 밀도와 $SiO_2$의 낮은 항복전계 등의 문제를 극복하기 위하여 PECVD와 NO어닐링 공정을 사용하여 MOS Capacitor를 제작하였다. 제작이 끝난 후, MOS Capacitor의 계면특성을 hi-lo C-V 측정, I-V 측정 및 SIMS를 이용해 측정하고 평가하였다. 계면의 특성을 건식 산화의 경우와 비교한 결과 20% 감소한 평탄대 전압 변화, 25% 감소한 $SiO_2$ 유효 전하 밀도, 8MV/cm의 증가한 $SiO_2$ 항복전계 및 1.57eV의 유효 에너지 장벽 높이, 전도대 아래로 0.375~0.495eV만큼 떨어져 있는 에너지 영역에서 69.05% 감소한 계면 포획 농도를 확인함으로써 향상된 계면 및 산화막 특성을 얻을 수 있었다.

In this research, n-based 4H-MOS Capacitor was fabricated with PECVD (plasma enhanced chemical vapor deposition) process for improving SiC/$SiO_2$ interface properties known as main problem of 4H-SiC MOSFET. To overcome the problems of dry oxidation process such as lower growth rate, high interface trap density and low critical electric field of $SiO_2$, PECVD and NO annealing processes are used to MOS Capacitor fabrication. After fabrication, MOS Capacitor's interface properties were measured and evaluated by hi-lo C-V measure, I-V measure and SIMS. As a result of comparing the interface properties with the dry oxidation case, improved interface and oxide properties such as 20% reduced flatband voltage shift, 25% reduced effective oxide charge density, increased oxide breakdown field of 8MV/cm and best effective barrier height of 1.57eV, 69.05% reduced interface trap density in the range of 0.375~0.495eV under the conduction band are observed.

키워드

참고문헌

  1. H. Morkoc et al., "Large-band-gap SiC, III-V Nitride, and II-VI ZnSe-based Semiconductor Device Technologies," Journal of Applied Physics, Vol.76, Issue 3, pp.1363-1398, 1994 https://doi.org/10.1063/1.358463
  2. G. Y. Song and K. S. Kim, "A Study of SiC Trench Schottky Diode with Tilt-Implantation for Edge Termination," Journal of IKEEE, Vol.18, No.2, pp.214-219, 2014 https://doi.org/10.7471/ikeee.2014.18.2.214
  3. J. B. Casady and R. W. Johnson, "Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review," Solid-State Electronics, Vol.39, No.10 pp.1409-1422, 1996 https://doi.org/10.1016/0038-1101(96)00045-7
  4. K. McDonald et al., "Characterization and Modeling of the Nitrogen Passivation of Interface Traps in $SiO_2$/4H-SiC," Journal of Applied Physics, Vol.93, No.5, pp.2719-2722, 2003 https://doi.org/10.1063/1.1542935
  5. V. V. Afanas'ev et al., "HfO2-based Insulating Stacks on 4H-SiC(0001)," Applied Physics Letters, Vol.82, No.6, pp.922-924, 2003 https://doi.org/10.1063/1.1538310
  6. J. H. Moon et al., "Effects of Thermally Oxidized-SiN Gate Oxide on 4H-SiC Substrate," Electrochemical and Solid-State Letters, Vol.10, Issue 11, pp.H327-H330, 2007 https://doi.org/10.1149/1.2773965
  7. Y. K. Sharma et al., "High-Mobility Stable 4H-SiC MOSFETs Using a Thin PSG Interfacial Passivation Layer," IEEE Electron Device Letters, Vol.34, No.2, pp.175-177, 2013 https://doi.org/10.1109/LED.2012.2232900
  8. L. K. Swanson et al., "Correlating Macroscopic and Nanoscale Electrical Modifications of $SiO_2$/4H-SiC Interfaces upon Post Oxidation Annealing in N2O and POCl3," Applied Physics Letters, Vol.101, No.193501, pp.1-4, 2012
  9. M. Noborio, "P-Channel MOSFETs on 4H-SiC {0001} and Nonbasal Faces Fabricated by Oxide Deposition and N2O Annealing," IEEE Transactions on Electron Devices, Vol.6, No.9, pp.1953-1958, 2009
  10. G. Y. Chung et al., "Improved Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide," IEEE Electron Device Letters, Vol.22, No.4, pp.176-178, 2001 https://doi.org/10.1109/55.915604
  11. H. Yasuto, "Physics and Technology of Silicon Carbide Devices," InTech, 2012
  12. C. Raynaud, "Silica Films on Silicon Carbide: A Review of Electrical Properties and Device Applications," Journal of Non-Crystalline Solids, Vol.280, Issues 1-3, pp.1-31, 2001
  13. V. V. Afanasev et al., "Intrinsic SiC/$SiO_2$ Interface States," Physica Status Solidi (a), Vol.162, Issue 1, pp.321-337, 1997 https://doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F
  14. S. Salemi, "The Effect of Defects and Their Passivation on the Density of States of the 4H-silicon-carbide/silicon-dioxide interface," Journal of Applied Physics, Vol.113, No.053703 pp.1-6, 2013
  15. J. A. Cooper, Jr., "Advances in SiC MOS Technology," Physica Status Solidi (a), Vol.162, Issue 1, pp.305-320, 1997 https://doi.org/10.1002/1521-396X(199707)162:1<305::AID-PSSA305>3.0.CO;2-7
  16. R. K. Chanana et al., "Fowler-Nordheim Hole Tunneling in p-SiC/$SiO_2$ Structure," Applied Physics Letters, Vol.77 No.16 pp.2560-2562, 2000 https://doi.org/10.1063/1.1318229
  17. M. Lenzlinger and E. H. Snow, "Fowler-Nordheim Tunneling into Thermally Grown $SiO_2$," Journal of Applied Physics, Vol.40, No.1, pp.278-283, 1969 https://doi.org/10.1063/1.1657043
  18. J. N. Shenoy et al., "Characterization and Optimization of the $SiO_2$/SiC Metal-Oxide Semiconductor Interface," Journal of Electronic Materials, Vol.24, No.4, pp.303-309, 1995 https://doi.org/10.1007/BF02659691
  19. M. Moumita, "Silicon Carbide-Materials, Processing and Applications in Electronic Devices," InTech, 2011
  20. J. H. Moon, "Effect of Postoxidation Annealing on High Temperature Grown $SiO_2$/4H-SiC Interfaces," Journal of The Electrochemical Society, Vol157, No.2, pp.H196-201, 2010 https://doi.org/10.1149/1.3267508
  21. A. K. Agarwal, "Temperature Dependence of Fowler-Nordheim Current in 6H-and 4H-SiC MOS Capacitors," IEEE Electron Device Letters, Vol.18, No.12, pp.592-594, 1997 https://doi.org/10.1109/55.644081

피인용 문헌

  1. Two Dimensional Imaging of the Laterally Inhomogeneous Au/4H-SiC Schottky Barrier by Conductive Atomic Force Microscopy vol.556-557, pp.1662-9752, 2007, https://doi.org/10.4028/www.scientific.net/MSF.556-557.545
  2. 낮은 순방향 전압 강하를 갖는 4H-SiC Trench-type Accumulation Super Barrier Rectifier(TASBR) vol.21, pp.1, 2014, https://doi.org/10.7471/ikeee.2017.21.1.73