• 제목/요약/키워드: Interface trap

검색결과 229건 처리시간 0.034초

Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope

  • Najam, Faraz;Kim, Sangsig;Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권5호
    • /
    • pp.530-537
    • /
    • 2013
  • An explicit surface potential calculation method of gate-all-around MOSFET (GAAMOSFET) devices which takes into account both interface trap charge and varying doping levels is presented. The results of the method are extensively verified by numerical simulation. Results from the model are used to find qualitative and quantitative effect of interface trap charge on subthreshold slope (SS) of GAAMOSFET devices. Further, design constraints of GAAMOSFET devices with emphasis on the effect of interface trap charge on device SS performance are investigated.

Charge Pumping Method를 이용한 N-type MOSFET의 Interface Trap(Dit) 분석

  • 고선욱;김상섭;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.328.1-328.1
    • /
    • 2014
  • MOSFET degradation의 대부분은 hot-carrier injection에 의한 interface state (Dit)의 생성에서 비롯되며 따라서 본 연구에서는 신뢰성에 대한 한 가지 방법으로 Charge pumping method를 이용하여 MOSFET의 interface trap(Dit)의 변화를 측정하였다. 소스와 드레인을 ground로 묶고 게이트에 펄스를 인가한 후 Icp를 측정하여 Dit를 추출하였다. 온도를 293~343 K까지 5 K씩 가변했을 때 293K의 Icp(${\mu}A$)는 0.12 nA 313 K는 0.112 nA 343 K는 0.926 nA이며 Dit (cm-1/eV-1)는 $1.61{\times}10^{12}$ (Cm-2/eV-1) $1.49{\times}10^{12}$ (Cm-2/eV-1) $1.23{\times}10^{12}$ (Cm-2/eV-1)이다. 측정결과 Dit는 Icp가 높은 지점에서 추출되며 온도가 높아지게 되면 Icp전류가 낮아지고 Dit가 줄어드는 것을 볼 수 있다. 온도가 올라가게 되면 carrier들이 trap 준위에서 conduction band 위쪽에 이동하게 되어서 interface에 trap되는 양이 작아지게 된다. 그래서 이때 Icp를 이용해 추출한 Dit 는 실제로 trap의 양이 줄어든 것이 아니라 Thermal excess 현상으로 인해 측정되는 Icp의 양이 줄어든 것으로 분석할 수 있다.

  • PDF

Analysis of Interface Trap Density between Semiconductor-Gate insulator with C-V characteristics

  • Jeong, Seung-Hyeon;Kim, Se-Min;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.645-647
    • /
    • 2008
  • In this paper, we analyzed interface trap density between pentacene and PVP and SiO2 gate dielectric by using high-low C-V characteristics. The interface trap density was $10^{13}\;cm^{-2}eV^{-1}$.

  • PDF

GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향 (Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET)

  • 박병준;김한솔;함성호
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.271-277
    • /
    • 2022
  • We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

SiGe p-FinFET의 C-V 특성을 이용한 평균 계면 결함 밀도 추출과 Terman의 방법을 이용한 검증 (Extraction of Average Interface Trap Density using Capacitance-Voltage Characteristic at SiGe p-FinFET and Verification using Terman's Method)

  • 김현수;서영수;신형철
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.56-61
    • /
    • 2015
  • 고주파에서 이상적인 커패시턴스-전압 곡선과 결함이 존재하여 늘어진 커패시턴스-전압 곡선을 SiGe p-FinFET 시뮬레이션을 이용하여 보였다. 두 곡선이 게이트 전압 축으로 늘어진 전압 차이를 이용하여 평균적인 계면 결함 밀도를 구할 수 있었다. 또한 같은 특성을 이용하는 Terman의 방법으로 에너지에 따른 계면 결함 밀도를 추출하고, 동일한 에너지 구간에서 평균값을 구하였다. 전압 차이로 구한 평균 계면 결함 밀도를 Terman의 방법으로 구한 평균값과 비교하여, 두 방법의 결과가 거의 비슷한 평균 계면 결함 밀도를 나타낸다는 것을 검증하였다.

OTFT의 게이트 절연층의 표면처리에 따른 계면트랩 분석 (Analysis of Interface trap density with treatment of gate dielectric layer of OTFT's)

  • 정승현;김세민;송정근;허영헌
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.383-384
    • /
    • 2008
  • In this paper, we extract interface trap density with treatment of gate dielectric of OTFT's. Interface trap densities in this paper were extracted from transfer curves. We obtained interface trap densities in pentacene / PVP interface Non-treated device has $1.4{\times}10^{12}cm^{-2}eV^{-1}$ Dit and treated device has $1.1{\times}10^{12}cm^{-2}eV^{-1}$ Dit.

  • PDF

Influences of Trap States at Metal/Semiconductor Interface on Metallic Source/Drain Schottky-Barrier MOSFET

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권2호
    • /
    • pp.82-87
    • /
    • 2007
  • The electrical properties of metallic junction diodes and metallic source/drain (S/D) Schottky barrier metal-oxide-semiconductor field-effect transistor (SB-MOSFET) were simulated. By using the abrupt metallic junction at the S/D region, the short-channel effects in nano-scaled MOSFET devices can be effectively suppressed. Particularly, the effects of trap states at the metal-silicide/silicon interface of S/D junction were simulated by taking into account the tail distributions and the Gaussian distributions at the silicon band edge and at the silicon midgap, respectively. As a result of device simulation, the reduction of interfacial trap states with Gaussian distribution is more important than that of interfacial trap states with tail distribution for improving the metallic junction diodes and SB-MOSFET. It is that a forming gas annealing after silicide formation significantly improved the electrical properties of metallic junction devices.

금속후 어닐링 방법이 Si-$SiO_2$ 계면 전하 농도에 미치는 영향 (Effect of Post-Metallization Anneal (PMA) on Interface Trap Density of Si-$SiO_2$)

  • 정종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.157-158
    • /
    • 2007
  • Effects of post-metallization anneal (PMA) on interface trap characteristics of Si-$SiO_2$ are studied. The conventional PMA method utilizes forming gas anneal, where 10% hydrogen in nitrogen atmosphere is used. A new PMA method utilizes hydrogen rich PECVD- silicon nitride $(SiN_x)$ film as a hydrogen diffusion source and a out-diffusion blocking layer. It can be shown through charge pumping current measurement that the new PMA is indeed effective to decrease Si-$SiO_2$ interface trap density.

  • PDF

Temperature Effect on the Interface Trap in Silicon Nanowire Pseudo-MOSFETs

  • 남인철;김대원;허근;;황종승;황성우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.487-487
    • /
    • 2013
  • According to shrinkage of transistor, interface traps have been recognized as a major factor which limits the process development in manufacturing industry. The traps occur through spontaneous generation process, and spread into the forbidden band. There is a large change of current though a few traps are existed at the Si-SiO2 interface. Moreover, the increased temperature largely affects to the leakage current due to the interface trap. For this reason, we made an effort to find out the relationship between temperature and interface trap. The subthreshold swing (SS) was investigated to confirm the correlation. The simulated results show that the sphere of influence of trap is enlarged according to increase in temperature. To investigate the relationship between thermal energy and surface potential, we extracted the average surface potential and thermal energy (kT) according to the temperature. Despite an error rate of 6.5%, change rates of both thermal energy and average surface potential resemble each other in many ways. This allows that SS is affected by the trap within the range of the thermal energy from the surface energy.

  • PDF