• 제목/요약/키워드: Interface strength

Search Result 1,709, Processing Time 0.026 seconds

AN EXPERIMENTAL STUDY ON THE CHEMICAL BOND STRENGTH AT THE INTERFACE BETWEEN PORCELAIN AND SUCCESSIVELY RECAST PALLADIUM-SILVER CERAMIC ALLOY (팔라디움-은합금의 반복주조시 도재와 금속간의 화학적 결합에 관한 실험적 연구)

  • Kim, Tae-Kyun;Lee, Sun-Hyung;Yang, Jae-Ho;Chong, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.31-47
    • /
    • 1989
  • The purpose of this study was to evaluate the chemical bond strength of successively recast Pd-Ag ceramic alloys with porcelain and to investigate changes of quantity of trace elements at the metal-porcelain interface. Porcelain was fired as usual manner on the each successively recast specimen. Rectangular planar shear test was performed and bond strength was measured by Instron universal testing machine. Diffusion of trace elements at the each interface was observed by ESCA (Electron Spectroscopy for Chemical Analysis). The obtained results were as follows : 1. Chemical bond strength was significantly decreased after second recasting. But in case of first recasting, there was no significant decrease of bond strength statistically (p<0.05). 2. Bond strength was not significantly decreased in each generation, when fifty percents new alloy was added (p<0.05). 3. Ag, Sn and In were observed at the porcelain interface. But Pd was not observed. 4. The quantity of Ag, In ions were progressively increased at the metal-porcelain interface as the casting was repeated. Silver ion was most significantly increased.

  • PDF

Experimental Study on Shear Mechanism Caused by Textured Geomembrane (돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Interface Characteristics of Epoxy Composite Treated with Silane Coupling Agent (실란 결합제 처리된 에폭시 수지 복합재료의 계면 특성)

  • Lee, Jae-Yeong;Lee, Hong-Gi;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1009-1013
    • /
    • 2001
  • The effects of coupling agent on the interface characteristics between epoxy resin and natural zeolite were studied by SEM, optical microscope and universal testing machine (UTM). Epoxy resin as a matrix was diglycidyl ether of bisphenol A (DGEBA)/4,4'-methylene dianiline (MDA)/malononitrile (MN) system and natural zeolite as an inorganic fillet was produced in Korea. With the increment of zeolite content, tensile strength decreased and it was due to the different elastic moduli of two materials. When external stress was loaded on the composites, the stress concentrated on the weakly bonded interface and crack grew easily. To improve the interface characteristics, the surface of the natural zeolite was treated with the silane coupling agent and it was found that the tensile strength was increased. The morphology of the interface showed that the bonding characteristics were modified by coupling agent.

  • PDF

Analysis of Soil Nailed Wall Behaviour Based on Field Measurements (현장계측을 통한 소일네일링 벽체의 거동 분석)

  • 이철주;이도섭;김홍택;박재억;김충규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • Behaviour of soil nailed walls in Korea has been analysed based on a number of field measurements. The investigation has included interface shear strength development at the nail-soil interface from pull-out tests, lateral ground displacements, tensile force distributions along soil nails and mobilised interface shear stress distributions. Insights into the soil nailed wall behaviour based on the shear transfer mechanism at the soil-nail interface and partial mobilisations of the interface shear strength, governed by relative shear displacement, are reported and discussed. It is expected that results from the current research can provide relevant parameters required for preliminary design of soil nailed walls in Korea.

Evaluation of Friction Properties between Geostrip/Sandpaper Interface (지오스트립/샌드페이퍼 계면에서의 마찰특성 평가)

  • Lim, Ji-Hye;Byun, Sung-Won;Jeon, Han-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.27-33
    • /
    • 2006
  • Frictional properties between geostrip and sand paper interface were estimated considering soil particle size also the friction coefficients and angles were determined with normal stress. Three kinds of geostrips of design strength 50, 70, 100 KN/m were used and 5 sandpapers of P100, P220, P320, P400, P600 were used also. Shear strength between geostrip and sand paper interface with design strength showed big difference and this is due to the uniform surface pattern of each geostrip when contact to sandpaper without regard to design strength. Shear strength of geostrip was increased with design strength and geostrips/P100 sandpaper interface showed the biggest value. Finally, all of geostrips showed the decrease phenomena of post-peak strength and this is due to the abrasion of geostrip surface by shear test.

  • PDF

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.

Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency (효율관점에서 흙/토목섬유 접촉면에서의 마찰특성)

  • Ahn, Hyun-Ho;Shim, Seong-Hyeon;Shim, Jai-Beom;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.65-72
    • /
    • 2007
  • Large-scale direct shear tests were conducted in order to investigate both the shear strength of soil itself and the friction behavior at the interface of soil/geosynthetics in respect of efficiency in this study. Sand, crushed stone and three types of geotextile (i.e. one woven geotextile and two nonwoven geotextiles) were used in the experimental program. The considered interfaces for the evaluation of interface shear strength in this study included sand/sand, crushed stone/crushed stone, sand/woven geotextile, crushed stone/woven geotextile, crushed stone/nonwoven geotextile-A and crushed stone/nonwoven geotextile-B. The results showed that the efficiency of 84% was obtained at the interface of sand/woven geotextile compared with the shear strength of sand itself (i.e. sand/sand interface). The efficiencies of 74%, 83% and 72% were obtained at the interface of crushed stone/nonwoven geotextile-A, crushed stone/nonwoven geotextile-B and crushed stone/woven geotextile, respectively compared with the shear strength of crushed stone itself (i.e. crushed stone/crushed stone interface).

A Study on the AC Interfacial Breakdown Properties of the Interface between Epoxy/EPDM with Variation of the Spread Oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연파괴 특성에 관한 연구)

  • Bae, Deok-Gwon;Jeong, Il-Hyeong;O, Jae-Han;Park, U-Hyeon;Lee, Gi-Sik;Kim, Chung-Hyeok;Lee, Jun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.445-450
    • /
    • 2000
  • Many successful developments and microscopic studies have been made on the high quality insulating materials. However, a little attention have given to the macroscopic interface in HV(High Voltage) insulating systems. In this study, AC interfacial breakdown strength and V-t characteristic of the interface between Epoxy/EPDM(ethylene propylene diene terpolymer) are investigated. Electrode system is designed to reduce the charges from electrodes and to have the tangential potentials along the interface between Epoxy/EPDM by FEM(finite elements method). The AC breakdown strength is observed when HV is given to the interface. It is shown that AC interfacial breakdown strength is improved by increasing interfacial pressure and oiling. In particular, it was saturated at certain interfacial pressure level. V-t characteristic is able to extend to the life time of the interface between Epoxy/EPDM. Oiling also plays a good roll in prolongation of the life time.

  • PDF

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

The Effect of the Heat Treatment Conditions on the Strength and Microstructure in the Bonded Interface in Dissimilar Metal and Aluminum Alloy (AL합금과 이종금속의 접합계면에서의 미세조직과 접합강도에 미치는 열처리조건의 영향)

  • Kim, Ick-Soo;Choi, Byung-Young;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.2-9
    • /
    • 2003
  • The aluminum alloy which is light and has excellent thermal conductivity and iron base alloy that is remarkable heat-resistece and wear resistence properties were bonded together. The bond was created between a stationary and a rotating member by using the frictional heat generated between them while subjected to high normal forces on the interface of Al alloy and iron base alloy. The microstructure of the bonded interface of friction welding and the strength in the bonded interface formed under various bonding conditions were examined through TEM, SEM with EDX and triple bending test. In interface of bonding materials formed after various heat treatment, bonding strength was substantially different, resulting from formation of intermetallic compound or softening during annealing.