• Title/Summary/Keyword: Intelligent Game Agent

Search Result 29, Processing Time 0.021 seconds

Intelligent Vocabulary Recommendation Agent for Educational Mobile Augmented Reality Games (교육용 모바일 증강현실 게임을 위한 지능형 어휘 추천 에이전트)

  • Kim, Jin-Il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.108-114
    • /
    • 2019
  • In this paper, we propose an intelligent vocabulary recommendation agent that automatically provides vocabulary corresponding to game-based learners' needs and requirements in the mobile education augmented reality game environment. The proposed agent reflects the characteristics of mobile technology and augmented reality technology as much as possible. In addition, this agent includes a vocabulary reasoning module, a single game vocabulary recommendation module, a battle game vocabulary recommendation module, a learning vocabulary list Module, and a thesaurus module. As a result, game-based learners' are generally satisfied. The precision of context vocabulary reasoning and thesaurus is 4.01 and 4.11, respectively, which shows that vocabulary related to situation of game-based learner is extracted. However, In the case of satisfaction, battle game vocabulary(3.86) is relatively low compared to single game vocabulary(3.94) because it recommends vocabulary that can be used jointly among recommendation vocabulary of individual learners.

An Intelligent NPC Framework for Context Awareness (상황인지를 위한 지능형 NPC 프레임워크)

  • Lee, Bong-Keun;Chung, Jae-Du;Ryu, Keun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2361-2368
    • /
    • 2009
  • Recently AI(Artificial Intelligence) is one of the issues in the on-line game, a research that a game character seems to be realistic and is progressing using AI technique. Especially NPC is an important part of the AI researches of on-line game, and it is concerned by a game player and an architect. We proposed an intelligent agent framework to implement the NPC technique after studying the NPC technique using context awareness that reacts to the PC(Player Character) actively. Also, it can be developed gradually, and apply to various application because it has the capability to of adding an agent or deleting an agent easily.

Implementation of Crowd Behavior of Pedestrain based AB and CA mathematical model in Intelligent Game Environment (게임환경에서 AB 와 CA 수학모델을 이용한 보행자들의 집단행동 구현)

  • Kim, Seongdong;Kim, Jonghyun
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.5-14
    • /
    • 2019
  • In this paper, we propose a modeling and simulation of group behavioral movement of pedestrians using Agent based and Cellular Automata model in intelligent game environment. The social behaviors of the crowds are complex and important, and based on this, the prototype game-model was implemented to show the crowd interaction on AB and CA in the game environment. Our experiment revealed the promise of group behaviour as a cost-efficient, yet accurate platform for researching crowd behaviour in risk situations with real models.

Generating Cooperative Behavior by Multi-Agent Profit Sharing on the Soccer Game

  • Miyazaki, Kazuteru;Terada, Takashi;Kobayashi, Hiroaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.166-169
    • /
    • 2003
  • Reinforcement learning if a kind of machine learning. It aims to adapt an agent to a given environment with a clue to a reward and a penalty. Q-learning [8] that is a representative reinforcement learning system treats a reward and a penalty at the same time. There is a problem how to decide an appropriate reward and penalty values. We know the Penalty Avoiding Rational Policy Making algorithm (PARP) [4] and the Penalty Avoiding Profit Sharing (PAPS) [2] as reinforcement learning systems to treat a reward and a penalty independently. though PAPS is a descendant algorithm of PARP, both PARP and PAPS tend to learn a local optimal policy. To overcome it, ion this paper, we propose the Multi Best method (MB) that is PAPS with the multi-start method[5]. MB selects the best policy in several policies that are learned by PAPS agents. By applying PS, PAPS and MB to a soccer game environment based on the SoccerBots[9], we show that MB is the best solution for the soccer game environment.

  • PDF

Development of Intelligent Multi-Agent in the Game Environment (게임 환경에서의 지능형 다중 에이전트 개발)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.69-78
    • /
    • 2015
  • Recently, research on the multi-agent system is developed actively in the various fields, especially on the control of complex system and optimization. In this study, we develop a multi-agent system for NPC simulation in game environment. The purpose of the development is to support quick and precise decision by inferencing the situation of the dynamic discrete domain, and to support an optimization process of the agent system. Our approach employed Petri-net as a basic agent model to simplify structure of the system, and used fuzzy inference engine to support decision making in various situation. Our experimentation describes situation of the virtual battlefield between the NPCs, which are divided two groups, such as fuzzy rule based agent and automata based agent. We calculate the percentage of winning and survival rate from the several simulations, and the result describes that the fuzzy rule based agent showed better performance than the automata based agent.

An Acquisition of Strategy in Two Player Game by Coevolutionary Agents

  • Kushida, Jun-ichi;Noriyuki Taniguchi;Yukinobu Hoshino;Katsuari Kamei
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.690-693
    • /
    • 2003
  • The purpose of two player game is that a player beats an enemy. In order to win to various enemies, a learning of various strategies is indispensable. However, the optimal action to overcome the enemies will change when the game done over and again because the enemy's actions also change dynamically. Sol it is din-cult that the player aquires the optimal action and that the specific player keeps winning to various enemies. Species who have a competition relation and affect other's existence is called a coevolution. Coevolution has recently attracred considerable interest in the community of Artificial Life and Evolutionary Computation(1). In this paper, we apply Classifier System for agent team to two player game. A reward and a penalty are given to the used rules when the agent achieve specific action in the game and each team's rulebase are evaluated based on the ranking in the league. We show that all teams can acquire the optimal actions by coevolution.

  • PDF

Architecture and Path-Finding Behavior of An Intelligent Agent Deploying within 3D Virtual Environment (3차원 가상환경에서 동작하는 지능형 에이전트의 구조와 경로 찾기 행위)

  • Kim, In-Cheol;Lee, Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.1-12
    • /
    • 2003
  • In this paper, we Introduce the Unreal Tournament (UT) game and the Gamebots system. The former it a well-known 3D first-person action game and the latter is an intelligent agent research testbed based on UT And then we explain the design and implementation of KGBot, which is an intelligent non-player character deploying effectively within the 3D virtual environment provided by UT and the Gamebots system. KGBot is a bot client within the Gamebots System. KGBot accomplishes its own task to find out and dominate several domination points pro-located on the complex surface map of 3D virtual environment KGBot adopts UM-PRS as its control engine, which is a general BDI agent architecture. KGBot contains a hierarchical knowledge base representing its complex behaviors in multiple layers. In this paper, we explain details of KGBot's Intelligent behaviors, tuck af locating the hidden domination points by exploring the unknown world effectively. constructing a path map by collecting the waypoints and paths distributed over the world, and finding an optimal path to certain destination based on this path graph. Finally we analyze the performance of KGBot exploring strategy and control engine through some experiments on different 3D maps.

Card Battle Game Agent Based on Reinforcement Learning with Play Level Control (플레이 수준 조절이 가능한 강화학습 기반 카드형 대전 게임 에이전트)

  • Yong Cheol Lee;Chill woo Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.32-43
    • /
    • 2024
  • Game agents which are behavioral agent for game playing are a crucial component of game satisfaction. However it takes a lot of time and effort to create game agents for various game levels, environments, and players. In addition, when the game environment changes such as adding contents or updating characters, new game agents need to be developed and the development difficulty gradually increases. And it is important to have a game agent that can be customized for different levels of players. This is because a game agent that can play games of various levels is more useful and can increase the satisfaction of more players than a high-level game agent. In this paper, we propose a method for learning and controlling the level of play of game agents that can be rapidly developed and fine-tuned for various game environments and changes. At this time, reinforcement learning applies a policy-based distributed reinforcement learning method IMPALA for flexible processing and fast learning of various behavioral structures. Once reinforcement learning is complete, we choose actions by sampling based on Softmax-Temperature method. From this result, we show that the game agent's play level decreases as the Temperature value increases. This shows that it is possible to easily control the play level.

Agent-Based Game Platform with Cascade-Fuzzy System Strategy Module (단계적 퍼지 시스템 전략모듈을 지원하는 에이전트기반 게임 플랫폼)

  • Lee, Won-Hee;Kim, Won-Seop;Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.1
    • /
    • pp.76-87
    • /
    • 2008
  • As hardware performance rises, game users demand higher computer graphic, more convenient UI(User Interface), faster network, and smarter AI(Artificial Intelligence). At this time, however, AI development is accomplished by a co-development team or only one developer. For that reason, it's hard to verify that AI performance and basic game AI technology is lacking for developing high-level AI. Searching the merits and demerits of existing game AI platforms, we investigate main points to consider when designing game AI platforms in this paper. From this we suggest Darwin, a game platform, based on agent that developers embody AI easily and capable of proposing AI test with module that makes them find strategic position. And then evaluate achievement results through making agent used strategic module that Darwin offers.

  • PDF

A Cooperation Strategy of Multi-agents in Real-Time Dynamic Environments (실시간 동적인 환경에서 다중 에이전트의 협동 기법)

  • Yoo, Han-Ha;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Game Society
    • /
    • v.6 no.3
    • /
    • pp.13-22
    • /
    • 2006
  • Games such as sports, RTS, RPG, which teams of players play, require advanced artificial intelligence technology for team management. The existing artificial intelligence enables an intelligent agent to have the autonomy solving problem by itself, but to lack interaction and cooperation between agents. This paper presents "Level Unified Approach Method" with effective role allocation and autonomy in multiagent system. This method allots sub-goals to agents using role information to accomplish a global goal. Each agent makes a decision and takes actions by itself in dynamic environments. Global goal of Team coordinates to allocated role in tactics approach. Each agent leads interactive cooperation by sharing state information with another using Databoard, As each agent has planning capacity, an agent takes appropriate actions for playing allocated roles in dynamic environments. This cooperation and interactive operation between agents causes a collision problem, so it approaches at tactics side for controlling this problem. Our experimental result shows that "Level Unified Approach Method" has better performance than existing rental approach method or de-centralized approach method.

  • PDF