2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

Generating Cooperative Behavior by Multi-Agent Profit Sharing
on the Soccer Game

Kazuteru Miyazaki

National Institution for Academic Degrees
and University Evaluation
1-29-1 Gakuennishimachi Kodaira-city
Tokyo, 187-8587 Japan

teru@niad.ac.jp

Abstract - Reinforcement learning is a kind of ma-
chine learning. It aims to adapt an agent to a given
environment with a clue to a reward and a penalty. Q-
learning [8] that is a representative reinforcement learn-
ing system treats a reward and a penalty at the same
time. There is a problem how to decide an appropri-
ate reward and penalty values. We know the Penalty
Avoiding Rational Policy Making algorithm (PARP) [4]
and the Penalty Avoiding Profit Sharing (PAPS) [2] as
reinforcement learning systems to treat a reward and a
penalty independently. Though PAPS is a descendant al-
gorithm of PARP, both PARP and PAPS tend to learn
a local optimal policy. To overcome it, in this paper, we
propose the Multi Best method (MB) that is PAPS with
the multi-start method [5]. MB selects the best policy in
several policies that are learned by PAPS agents. By ap-
plying PS, PAPS and MB to a soccer game environment
based on the SoccerBots [9], we show that MB is the best
solution for the soccer game environment.

1. INTRODUCTION

Reinforcement learning is a kind of machine learning. It
aims to adapt an agent to a given environment with a clue
to a reward and a penalty. We can classify RL systems in-
to two types. One is focusing on the optimality in Markov
Decision Processes (MDPs) such as @Q-learning (QL) [8]
and k-Certainty Ezploration Method [6]. The other is fo-
cusing on the rationality in non-Markovian environments,
such as Profit Sharing (PS) [1, 7].

We know the rationality theorem of PS [7] to guar-
antee the rationality in non-Markovian environments. It
does not support a reward and a penalty at the same
time. On the other hand, QL guarantees the optimality
in MDPs where there are both a reward and a penalty.
However, it is difficult to design an appropriate reward
and penalty values. If we set incorrect these values, the
agent will learn unexpected behavior [4].

The Penalty Avoiding Rational Policy Making algo-
rithm (PARP) [4] gives one solution for this problem.
It can treat a reward and a penalty independently. It
guarantees the rationality by suppressing all penalties.
However, it has to memorize all rules that have been ex-

Cooperation Vulunteer
ce311261@yahoo.co.jp

Takashi Terada Hiroaki Kobayashi

Japan Overseas Meiji University
1-1-1 Higashimita Tama-ku
Kawasaki, 214-8571 Japan

kobayasi@isc.meiji.ac.jp

perienced and descendant states that have been transited
by their rules to find all penalty rules. It is difficult to
adapt on the large state space problems because of the
curse of dimensionality.

Recently, we have proposed the Penalty Avoiding Prof-
it Sharing (PAPS) (2] to reduce the problem by connect-
ing PARP with PS. Though PAPS is a descendant algo-
rithm of PARP, both PARP and PAPS tend to learn a
local optimal policy.

In this paper, we propose the Multi Best method(MB)
to overcome the above problem. It is constructed by PAP-
S with the multi-start method [5]. By applying PS, PAPS
and MB to a soccer game environment based on the Soc-
cerBots [9], we show that MB is the best solution for the
soccer game environment.

2. THE DOMAIN

2.1. Target Environments

Consider an agent in some unknown environment. The a-
gent senses the environment as a set of discrete attribute-
value pairs and performs an action in M discrete varieties.
The environment gives a reward or a penalty to the agent
as a result of some sequence of action. We assume that
there is a kind of a reward and apenalty in the environ-
ment. We will give the agent a reward for achievement of
the purpose and a penalty for violation of restriction.

We denote a sensory input as z,y,- -+ and actions as
a,b,---. A pair of a sensory input and an action is called
a rule. We denote a rule ”if x then a” as za. A scalar
weight, that represents the importance, is attached to
each rule. The weight of rule za is denoted as Sz,. The
function that maps sensory inputs to actions is called a
policy. We call a policy deterministic if and only if at
most one action should be selected in each sensory input.
We call a policy rational if and only if expected reward
per an action is larger than zero.

We call a sequence of rules selected between the previ-
ous reward (or a penalty) and the current one an episode.
For example, when the agent selects xb, xa, ya. za, yb,
(reward),ra,zb,xa and yb, (reward) in figure 1, there
are two episodes (vb,xva, ya. za, yb) and (va. zb, xa, yb) as

166

X, Y, Z ; sensory input
a, b ; action
V ; reward

Figure 1: A sample environment.

a detour

& detour,

xb xa ya za yb | xa zb xa yb ¢

episode 1 episode 2

1.y,z; sensory input a,b; action xa;rule " if xthena" </; reward

Figure 2: An example of an episode and a detour.

snown in figure 2. We call a subsequence of an episode a
detour when the sensory input of the first selecting rule
and the sensory output of the last selecting rule are the
same though both rules are different. For example, an
2pisode 1 in figure 1 has two detours (zb) and (ya, za) as
szown in figure 2. The rules on a detour may not con-
sribute to get any reward. The rule that does not exist
:n a detour in some episode is rational. Otherwise, a rule
called irrational. Irrational rules should not be selected
when they conflict with rational rules.

In this paper, we assume that a rational rule does
~ot change to an irrational rule. It is called no type 2
confusion [5]. MDPs is contained in the class.

2.2. Profit Sharing

Zrofit Sharing (PS) reinforces rules on an episode at once.
e call a function that shares a reward {or a penalty)
among rules on an episode a reinforcement function. The
~erm f; denotes a reinforcement value for the rule selected
at 7 step before a reward (or a penalty) is acquired. The
weight Sy, of rule r; is reinforced by S, = S, + f: for an
eoisode (rw—1,7i,...,71,70) Where W is the length of an
enisode,

When a reward (or a penalty) fo is given to the agent,
‘ve use the following reinforcement function that satisfies

“he Rationality Theorem of PS [7],

1, .
fn—ﬁfn—ly n_1,2,---,Ufa—1, (1)

vhere M is the number of actions. For example, at
#pisode 2 in figure 2, the weight of yb, ra and zb are
reinforced by Syp = Syb + fo, Sza = Sra + %fo + (i;)‘fu
wad Sy = S + (%)2]"0, respectively.

The rationality theorem of PS guarantees the ratio-
nality on the class where there is no type 2 confusion.It
sannot treat both a reward and a penalty at the same
time. If we want to use two type weights sucl as a re-
ward and a penalty, we should use the other methods
Hreussed 1 section 2.3 and 2.4,

167

Figure 3: An example of penalty rules (za,ya) and a
penalty state (y).

procedure The Penalty Rule Judgement
begin
Set a mark on the rule that has been got a penalty directory
do
Set a mark on the following state ;
there is no rational rule or
there is no rule that can transit to no marked state.
Set a mark on the following rule ;
there are marks in the states that can be transited by it.
while (there is a new mark on some state)
end.

Figure 4: The Penalty Rule Judgment algorithm(PRJ);
First, we set a mark on the rule that has been got a penalty
directory. Second, we set a mark on the state where there
is no rational rule or there is no rule that can transit to no
marked state. Last, we set a mark on the rule where there are
marks in the states that can be transited by it. We can regard
a marked rule as a penalty rule. We can find all penalty rules
in the current rule set by continuing the above process until
there is no new mark.

2.3. The Penalty Avoiding Rational Policy Mak-
ing algorithm

We know the Penalty Avoiding Rational Policy Mak-
ing algorithm (PARP) [4] as a reinforcement learning sys-
tem to treat a reward and a penalty at the same time.
We call a rule penalty if and only if it has a penalty or
it can transit to a penalty state in which there are penal-
ty or irrational rules. For example, in figure 3. za and
ya are penalty rules, and state y is a penalty state. We
call a policy that cannot have any penalty rule a penalty
avoiding policy.

PARP is a reinforcement learning system to make a
penalty avoiding rational policy. To avoid all penalties,
it suppresses all penalty rules in the current rule set by
the Penalty Rule Judgment algorithm (PRJ) as shown in
fizure 4. After suppressing all penalty rules, it aims to
make a deterministic rational policy by PS. the Rational
Policy Improvement algorithm [4] and so on. Further-
more, it avoids all penalties stochastically if there is no
deterministic rational policy.

PRJ has to memorize all rules that have been experi-
enced and descendant states that have been transited by
their rules to find all penalty rules. Furthermore, PARP
needs O(A/ N?) memory to suppress all penalties stochas-
tically where 3 is the nunmiber of actions and N 1s that of

states. Therefore, in applying PARP to large-scale prob-
lems, we are confronted with the curse of dimensionality.

2.4. The Penalty Avoiding Profit Sharing

The Penalty Avoiding Profit Sharing (PAPS) [2] is a re-
inforcement learning system to overcome the problem of
PARDP. It uses two type weights of PS. One is for a reward,
the other is for a penalty. It selects an action considering
with the weights of PS for a reward if there is non-penalty
rule in current state. On the other hand, if all rules are
penalty rules in current state, it selects an action with
the weights of PS for a penalty. In this case, we share a
penalty by the function (1), and select an action that is
less reinforced in a rational rule.

It is important to classify an irrational rule from penal-
ty rules. We can judge an irrational rule in an episode by
attaching the flag for each rules. In the first, all flags go
to up. Next, scanning starts from the state that gets a
penalty or a reward on the episode. If the rule has been
selected at the first time, the flag goes to down. As result,
the rule whose flag is up is the candidate of an irrational
rule.

Furthermore, PAPS uses modified PRJ to find a penal-
ty rule. The original PRJ needs O(M N?) memory s-
ince it scans all state spaces. To reduce it, we use PRJ
on episode where the scanning is restricted within each
episode. In this case, a penalty rule and the mark to
find a penalty state are backtracked on the episode from
a penalty state. Such the mark transition on episode is
continuing until there is no new penalty state. It needs
only O(M N) memory since it memorizes only an episode
and penalty rules.

3. PROPOSAL OF THE MULTI BEST
METHOD

PARP and PAPS tend to learn a local optimal policy s-
ince they are based on PS. To overcome it, we consider
that PAPS is performed several times. After perform-
ing PAPS several times by the multi-start method [5], we
make the best trial more learner. It is called the Mult
Best method (MB).

The usual multi-start method repeats initialization
and makes the best policy the final policy. It does not
consider improving the final policy more than it. On the
other hand, MB performs improving the final policy ob-
tained by the multi-start method.

For example, we show the case where the geme of
100000 steps is perfomed 10 times. PS and PAPS con-
tinue updating and learning continuously in each 100000
steps. On the other hand, in MB, after playing a game
10 times for 50000 steps, a game is played 10 times for
further 50000 steps using the best policy in it.

4. APPLICATION TO THE SOCCER GAME

4.1. The soccer game environment

We apply PS, PAPS and MB to a soccer game environ-
ment based on the SoccerBots [9]. SoccerBots simulates
the dynamics and dimensions of a regulation RoboCup s-
mall size robot league game. Though SoccerBots has two
teams of five robots, we use only one learning agent for
our team and a keeper agent for each team as shown in
figure 5.

@ kickspot
A kickspotl
| kickspot2

N

Figure 5: The soccer game environment.

Our learning agent is designed as the PS, PAPS or MB
agent. The keeper agent behaves a keeper whose y-axis
approaches to the ball’s y-axis when it senses the ball.
The keeper cannot kick a ball. Field Size is 2.740(W)m
x 1.525(L)m. The ball’s and the robot’s diameters are
0.040m and 0.150m, respectively.

4.2. How to design the learning agent

The learning agent has the following four sensory inputs
(S,D,AK).
e S is the position of the learning agent ; there are 16

rectangle positions in figure 5. Each rectangle is 0.68m
x 0.38m.

o D is the distance from the learning agent to the ball
:D<06,06<D<1212<D<18,18<D.

o A is the angle from the learning agent to the ball ;
0<SACE F<A<CT, -3 <A<, —7<AL -5,

e K is the y-axis position of the keeper ; K < -0.15,
—0.15 < K < —0.05, —0.05 < K < 0.05, 0.05 < K <
0.15, 0.15 < K.

The learning agent has the following four actions.

e can kick

e move to kickspot (figure 5:@)

¢ move to kickspotl (figure 5:A)

¢ move to kickspot2 (figure 5:l)

When the learning agent achives a goal, it receives
a reward. On the other hand, if it makes own goal, it
receives a penalty.

168

4.3. Results and Discussion

We show the results of each method in table 1. The upper
of the table is the number of goals and it of the lower is
own goals. It contains the averages (ave.) and the stan-
Jard deviations (S.D.) of 10 games. One game is 100000
sweps (actions) long. The PS, PAPS, MB agents exceed
:he random selection (RND) agent. The RND agent se-
ects an action at random in every step. Especially, MB
sa1ows the best solution for this problem. It means that
zonnecting PARP with IS and the multi-start method
are useful for this problem.

Table 1: The averages and the standard deviations of 10
zames in the soccer game.

{ [MB | PAPS | PS [RND |

goals ave. | 302.1 | 1425 | 124.0 | 89.5
S.D. | 4.15 24.3 30.0 | 3.48

own goals ave. | 15.7 23.3 33.2 | 336
S.D. | 0633 | 1.85 2.54 | 2.67

Furthermore, we show all results of 10 games in ta-
tle 2. The upper of each column is the number of goals
and it of the lower is own goals. The PS agent learns an
unexpected results (No.10) such that the number of goals
15 less than that of own goals. On the other hand, The
PAPS and MB agents do not learn such results. Further-
more, the MB agent takes the best results in this table.
We can see the superiority of the MB agent in the soccer
game environment.

5. CONCLUSIONS

The most reinforcement learning systems treat a reward
and a penalty on the same weights. There is a problem
how to decide an appropriate reward and penalty values.
We know PARP as a reinforcement learning system to
treat a reward and a penalty independently. PARP is dif-
ficult to adapt on the large state space problems because
of the curse of dimensionality. On the other hand, we
know the Penalty Avoiding Profit Sharing (PAPS) to re-
duce the problem by connecting PARP with PS. Though
PAPS is an descendant algorithm of PARP, both PARP

Table 2: All results of 10 games in the soccer game.

and PAPS tend to learn a local optimal policy.

In this paper, we propose the Multi Best method (M-
B) to overcome the above problem. It is constructed by
PADS with the multi-start method [5]. MB selects the
best policy in several policies that are learned by PAPS
agents. By applying PS, PAPS and MB to soccer game
environments based on the SoccerBots [9], we show that
MB is the best solution for the soccer game environment.

In the future, we will extend MB to the environmen-
t where there are a few kind of rewards and penalties.
Furthermore, we should apply it on the multi-agent envi-
ronment [3] such that there are five robots for each teams
on the SoccerBots.

6. REFERENCES

{1] Grefenstette, J. J.: Credit Assignment in Rule Discovery
Systems Basced on Genetic Algorithms, Machine Learn-
ing, Vol.3. pp.225-245, 1988.

Miyazaki, K., Saiou, J. & Kobayashi, S. Reinforcemen-
t Learning for Penalty Avoiding Profit Sharing and its
Application to the Soccer Game, ICONIP’02-SEAL02-
FSKD’02, pp.335-339, 2002.

Miyazaki, K. & Kobayashi, S. Rationality of Reward
Sharing in Multi-agent Reinforcement Learning, Journal
of New Generation Compuling,Vol.91, pp.157-172, 2001.

—_—
o

Miyazaki, K. & Kobayashi, S. Reinforcement Learning
for Penalty Avoiding Policy Making. 2000 IEEE Inter-
national Conference on Systems, Man and Cybernetics,
pp.206-211, 2000.

Miyazaki, K. & Kobayashi, S. Learning Determinis-
tic Policies in Partially Observable Markov Decision
Processes, International Conference on Intelligent Au-
tonomous System (IAS-5), pp.250-257, 1998.

Miyazaki, K., Yamamura, M. & Kobayashi, S. k-
Certainty Exploration Method : An Action Selector
on Reinforcement Learning to Identify the Environmen-
t, Journal of Artificial Intelligence, Vol.91, pp.155-171,
(1997).

K.Miyazaki, M.Yamamura and S.Kobayashi. On the Ra-
tionality of Profit Sharing in Reinforcement Learning,
Proc. of the 3rd International Conference on Fuzzy Log-
ic, Neural Nets and Soft Computing, pp.285-288, 1994.

Watkins, C. J. II., & Dayan, P.: Technical note: Q-
lecarning, Machine Learning Vol.8, pp.55-68, 1992.

—_—
[=2)
=

http://www.teambots.org

No. [1 2 3 4 5 6 7 8 9 10 [
MB goals | 295 322 278 293 310 314 314 293 299 303
own goals 14 13 18 15 17 13 16 I8 18 15
PAPS goals | 237 168 115 167 178 87 7 7 41 225
own goals 23 25 16 32 20 21 27 29 24 26
PS goals 61 110 123 52 119 114 269 61 312 19
| own goals 32 33 32 13 36 21 20 39 32 44

169

