• Title/Summary/Keyword: Insulin Resistance

Search Result 667, Processing Time 0.03 seconds

Cord Blood Adiponectin and Insulin-like Growth Factor-I in Term Neonates of Gestational Diabetes Mellitus Mothers: Relationship to Fetal Growth

  • Sohn, Jin-A;Park, Eun-Ae;Cho, Su-Jin;Kim, Young-Ju;Park, Hye-Sook
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the relationship between cord blood adiponectin and insulin-like growth factor (IGF)-I and their effect on fetal growth and insulin resistance in mothers with gestational diabetes mellitus (GDM). Methods: Cord blood adiponectin and IGF-I were compared between mothers with GDM (GDM group, N=53) and controls (non-GDM group, N=101). Neonates were classified into three groups of small for gestational age (SGA, N=26), appropriate for gestational age (AGA, N=97), and large for gestational age (LGA, N=31) by birth weight. The association between cord adiponectin and IGF-I levels was evaluated in relation to maternal and neonatal clinical data. Results: Cord adiponectin was lower in the GDM group than in the non-GDM group (P<0.001). There was no significant difference in cord adiponectin among the SGA, AGA, and LGA groups in the GDM group (P=0.228). The cord adiponectin of AGA in the GDM group was significantly lower than that in the non-GDM group (P<0.001). The most powerful predictor affecting cord adiponectin was the result of maternal 75 g oral glucose tolerance test. The cord IGF-I values between the GDM group and the non-GDM group were not different (P=0.834). Neonates with the heavier birth weight had the higher cord IGF-I levels. The most powerful predictor affecting cord IGF-I was birth weight and the next was maternal parity. Conclusion: Both cord blood adiponectin and IGF-I were associated with fetal growth, but IGF-I was a more general and direct factor affecting fetal body size, and adiponectin seemed to have more association with insulin sensitivity than growth.

The Study of the Changes of Obesity-Relating Biomarkers in High Fat Fed-Induced C57BL/6 Mice (고지방 식이로 비만이 유도된 C57BL/6 마우스에서 식이 기간에 따른 비만 관련 지표 변화에 대한 연구)

  • Song, Mi-Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.16 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Objectives: The prevalence of obesity continues rise and obesity and metabolic syndrome is a major problem in global health care. Animal models are used in the drug discovery of novel treatment for obesity. One of common models of obesity is a high fat diet induced obesity in a C5BL/6 mouse, and the development of obesity and glucose tolerance in mouse model is different according to period of diet. Therefore, this study was performed to observe the development of obesity and glucose tolerance during a high fat diet (HFD). Methods: Male C57BL/6 mice, 5 weeks of age, were fed on a standard chow diet as a normal diet (18 kcal% fat) or a HFD (60 kcal% fat) for up to 16 weeks. The various factors related with obesity and insulin resistance were measured at 8, 12, and 16 weeks. Results: The weights of body and epididymal fat were gradually increased for 8~16 weeks, however the change of hyperglycaemia and glucose tolerance have shown different with that of body weight. Blood glucose, oral glucose tolerance and insulin tolerance were increased more clearly at week 12 and 16 than week 8. Lipid accumulation of liver and body temperature were also significantly increased at week 16, compared with normal group. Conclusions: The developments of obesity and related factors were different by a HFD period in a C57BL/6 obese mice. This result suggests that the development of obesity with glucose tolerance and liver lipid may induce clearly by a HFD for 16 weeks.

Effects of Fermented Lotus Extracts on the Differentiation in 3T3-L1 Preadipocytes (3T3-L1 전지방세포에서 연잎-연근 혼합 발효물의 지방세포 분화 억제 효과)

  • Lee, Sin Ji;Bose, Shambhunath;Lee, Su-Jin;Jeong, Ji-Eun;Koo, Byung-Soo;Kim, Dong-Il;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.13 no.2
    • /
    • pp.74-83
    • /
    • 2013
  • Objectives: This study was performed to evaluate the effects of fermented lotus extracts on the inhibition of differentiation in 3T3-L1 preadipocytes. Methods: Extracts of lotus leaf and lotus root were fermented using 4 different probiotics separately, including Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium breve, and Bifidobacterium longum. Inhibition of preadipocyte differentiation was examined by Oil red O dye staining. Expressions of adipogenic transcription factors including CCAAT/enhancer binding proteins (C/$EBP{\alpha}$) and peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$) were analyzed by real time polymerase chain reaction and Western blotting analysis. Results: Fermented lotus extracts inhibited adipogenic transcription factors by inhibiting preadipocytes differentiation. All of the groups fermented by 4 kinds of probiotics showed reduction in Oil Red O dye staining. Bifidobacterium breve showed the most effective inhibition of C/$EBP{\alpha}$. Bifidobacterium breve and Bifidobacterium longum showed the best downregulation of $PPAR{\gamma}$ expressions compared with the control and the unfermented lotus group. Conclusions: Fermented lotus extracts showed significant effects on inhibition of preadipocyte differentiation in 3T3-L1 preadipocytes showing correlation with insulin sensitivity and lipid metabolism related with obesity.

Differential Expression of Metabolism-related Genes in Liver of Diabetic Obese Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Park, Mi-Kyoung;Kim, Duk-Kyu;Lee, Hye-Jeong;Hong, Sook-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous type 2 diabetes (T2D), develops hyperglycemic obesity with hyperinsulinemia and insulin resistance after the age of 25 weeks, similar to patients with noninsulin-dependent diabetes mellitus (DM). In the present study, we determined whether there are differences in the pattern of gene expression related to glucose and lipid metabolism between OLETF rats and their control counterparts, Long-Evans Tokushima (LETO) rats. The experiment was done using 35-week-old OLETF and LETO rats. At week 35 male OLETF rats showed overt T2D and increases in blood glucose, plasma insulin, plasma triglycerides (TG) and plasma total cholesterol (TC). Livers of diabetic OLETF and LETO rats also showed differences in expression of mRNA for glucose and lipid metabolism related genes. Among glucose metabolism related genes, GAPDH mRNA was significantly higher and FBPase and G6Pase mRNA were significantly lower in OLETF rats. For lipid metabolism related genes, HMGCR, SCD1 and HL mRNA were substantially higher in OLETF rats. These results indicate that gluconeogenesis in OLETF rats is lower and glycolysis is higher, which means that glucose metabolism might be compensated for by a lowering of the blood glucose level. However, lipid synthesis is increased in OLETF rats so diabetes may be aggravated. These differences between OLETF and LETO rats suggest mechanisms that could be targeted during the development of therapeutic agents for diabetes.

Anti-diabetic Effects of Ethanol Extract from Bitter Melon in Mice Fed a High-fat Diet

  • Yoon, Nal Ae;Park, Juyeong;Lee, Jiyeon;Jeong, Joo Yeon;Kim, Hyun-Kyu;Lee, Hak Sung;Hwang, In Guk;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Lee, Dong Hoon;Kang, Sang Soo
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.259-267
    • /
    • 2017
  • Present study aimed to determine the effect of 'bitter melon', a popularly used fruit in Bangladesh and several other Asian countries, on high-fat-diet-induced type 2 diabetes. To investigate the effect, ethanol extract from bitter melon (BME) as a dietary supplement with mouse chow was used. BME was found to significantly attenuate the high-fat diet (HFD) -induced body weight and total fat mass. BME also effectively reduced the insulin resistance induced by the HFD. Furthermore, dietary supplementation of BME was highly effective in increasing insulin sensitivity and reducing hepatic fat and obesity. These results indicate that BME could be effective in attenuating type 2 diabetes and could therefore be a preventive measure against type 2 diabetes.

Effects of corn gluten hydrolyzates, branched chain amino acids, and leucine on body weight reduction in obese rats induced by a high fat diet

  • Bong, Ha-Yoon;Kim, Ji-Yeon;Jeong, Hye-In;Moon, Min-Sun;Kim, Joo-Hee;Kwon, O-Ran
    • Nutrition Research and Practice
    • /
    • v.4 no.2
    • /
    • pp.106-113
    • /
    • 2010
  • In this study, we compared corn gluten hydrolyzates, BCAAs, and leucine for their effects on body weight reduction in high fat-induced obese rats in order to determine the major active components in the corn gluten hydrolyzates. After obesity was induced for 13 weeks with high fat diet, the overweight-induced SD rats (n = 64) were stratified according to body weight, randomly blocked into eight treatments, and raised for 8 weeks. Four groups were changed to a normal diet and the other groups remained on the high fat diet. Each of the groups within both diets was fed either casein, corn gluten hydrolyzates, leucine, or branched chain amino acids, respectively. Daily food intake, body weight gain, and food efficiency ratio were significantly lower in the corn gluten hydrolyzate groups compared to the other groups, regardless of the high fat diet or normal fat diet. The rats fed the corn gluten hydrolyzates diet had the lowest perirenal fat pad weights whereas muscle weight was significantly increased in the corn gluten hydrolyzates groups. Plasma triglyceride, hepatic total lipid, and total cholesterol contents were significantly reduced in the corn gluten hydrolyzates groups. Other lipid profile measurements were not significantly changed. Plasma triglyceride and hepatic total lipid were also significantly reduced in the BCAA and leucine groups. Leptin levels were significantly lower and adiponectin was significantly higher in the corn gluten hydrolyzates groups. Fasting blood glucose, insulin, C-peptide, and HOMA-IR levels were also significantly reduced in the corn gluten hydrozylates groups, regardless of fat level.

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice

  • Choi, Ha-Neul;Jang, Yang-Hee;Kim, Min-Joo;Seo, Min Jeong;Kang, Byoung Won;Jeong, Yong Kee;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.172-176
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is becoming an important public health problem as metabolic syndrome and type 2 diabetes have become epidemic. In this study we investigated the protective effect of Cordyceps militaris (C. militaris) against NAFLD in an obese mouse model. MATERIALS/METHODS: Four-week-old male ob/ob mice were fed an AIN-93G diet or a diet containing 1% C. militaris water extract for 10 weeks after 1 week of adaptation. Serum glucose, insulin, free fatty acid (FFA), alanine transaminase (ALT), and proinflammatory cytokines were measured. Hepatic levels of lipids, glutathione (GSH), and lipid peroxide were determined. RESULTS: Consumption of C. militaris significantly decreased serum glucose, as well as homeostasis model assessment for insulin resistance (HOMA-IR), in ob/ob mice. In addition to lowering serum FFA levels, C. militaris also significantly decreased hepatic total lipids and triglyceride contents. Serum ALT activities and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels were reduced by C. militaris. Consumption of C. militaris increased hepatic GSH and reduced lipid peroxide levels. CONCLUSIONS: These results indicate that C. militaris can exert protective effects against development of NAFLD, partly by reducing inflammatory cytokines and improving hepatic antioxidant status in ob/ob mice.

Effects of Pinitol Supplementation and Strength Training on Anaerobic Performance and Status of Energy Substrates in Healthy Young Men

  • Lee, Dae-Taek;Lee, Woon-Yong
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.189-195
    • /
    • 2005
  • To assess the effect of pinitol supplementation and strength training for two weeks on the anaerobic capacity during and after exercise, and improvement of glucose metabolism during the recovery period of muscular fatigue with repeated acute bouts of cycling exercise, a total of 24 healthy young men were recruited and randomly and equally divided into three groups; pinitol supplementation group (PSG), placebo group (PLG), and control group (CON). Using a randomized double-blinded design, subjects in PSG were provided pinitol supplement, consumed orally 1.2 g/day, and participated in the resistance exercise program and cycling exercise for two weeks. Subjects in PLG underwent the same protocol as those in PSG but consumed the same amount of placebo. No supplementation and exercise program was given to CON. Before and after the intervention, all subjects were tested for their anaerobic capacities evaluated by Wingate test twice separated by 30 min. During the test, peak anaerobic power (PP), mean anaerobic power, total work, and fatigue index were evaluated During resting and recovery, blood samples were drawn and plasma pinitol, myo-inositol, chiro-inositol, insulin, free fatty acid, glucose, and lactate levels were analyzed After two weeks, PP and relative PP of the second biking were improved from the first biking in PSG only (p<0.05). No changes were found in all other variables of Wingate test in all groups. No statistical differences between groups and pre- and post-intervention were observed in concentrations of pinitol, myo-inositol, and chiro-inositol, but pinitol concentration was higher during recovery compared to the baseline in all groups and testings (p<0.05). Lactate level during recovery was higher than the resting level, but no other blood parameters were significantly changed. In conclusion, two weeks of pinitol supplementation in conjunction with short duration of anaerobic training in healthy young men did not induce any obvious benefits in terms of anaerobic capacity and energy metabolism Individual and/or population susceptibility may be one factor responsible for adopting pinitol supplementation.

Factors associated with Advanced Bone Age in Overweight and Obese Children

  • Oh, Min-Su;Kim, Sorina;Lee, Juyeon;Lee, Mu Sook;Kim, Yoon-Joo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.1
    • /
    • pp.89-97
    • /
    • 2020
  • Purpose: Obese children may often present with advanced bone age. We aimed to evaluate the correlation between factors associated with childhood obesity and advanced bone age. Methods: We enrolled 232 overweight or obese children. Anthropometric and laboratory data, and the degree of nonalcoholic fatty liver disease (NAFLD) were measured. We analyzed factors associated with advanced bone age by measuring the differences between bone and chronological ages. Results: The normal and advanced bone age groups were comprised of 183 (78.9%) and 49 (21.1%) children, respectively. The prevalence of advanced bone age significantly increased as the percentiles of height, weight, waist circumference, and body mass index (BMI) increased. BMI z-score was higher in the advanced bone age group than in the normal bone age group (2.43±0.52 vs. 2.10±0.46; p<0.001). The levels of insulin (27.80±26.13 μU/mL vs. 18.65±12.33 μU/mL; p=0.034) and homeostatic model assessment-insulin resistance (6.56±6.18 vs. 4.43±2.93; p=0.037) were significantly higher, while high density lipoprotein-cholesterol levels were lower (43.88±9.98 mg/dL vs. 48.95±10.50 mg/dL; p=0.005) in the advanced bone age group compared to those in the normal bone age group, respectively. The prevalence of advanced bone age was higher in obese children with metabolic syndrome than in those without (28.2% vs. 14.7%; p=0.016). The prevalence of advanced bone age was higher in obese children with a more severe degree of NAFLD. Conclusion: Advanced bone age is associated with a severe degree of obesity and its complications.