• Title/Summary/Keyword: Inorganic lead

Search Result 129, Processing Time 0.027 seconds

Development of Environmental-friendly Nontoxic Organic.Inorganic Complex Pigment (환경친화적 무독성 유.무기 복합안료 개발연구)

  • Do, Young-Woong;Hong, Zhao;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1739-1744
    • /
    • 2008
  • Non-toxic orgarnic inorgarnic complex green pigment using Fluidized Bed Vapor Deposition(FB-VD) process was developed to alternate green pigment used heavy metals chrome and lead in present domestic. Kaolin materials and $CaCO_3$ were used as supporter of pigment and surface and compositions of supporters were characterized by SEM and EDXS, respectively. Various kind of surface active agents(surfactants) were also used to optimize the dry condition or color revelation. Results showed that anion type surfactant is most suitable for dry and color revelation of pigment.

A Comparison of the Leaving Group Ability of Transition Metal Carbonyl Anions vs. Halides : Reaction of $MH^-$ with M'-R $(MH^-\;=\;HW(CO)_4\;-P(OMe)_3\;^-,\;HW(CO)_5\;^-,\;HCr(CO)_5\;^-,\;HFe(CO)_4\;^-;\;M'-R=CpMo(CO)_3(CH_3),\;CpMo(CO)_3{CH_2CH(CH_2)_2})$

  • Yong Kwang Park;Seon Joong Kim;Carlton Ash
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 1990
  • The anionic transition metal hydrides $(HW(CO)_4P(OMe)_3\;^-,\;HW(CO)_5\;^-,\;HCr(CO)_5\;^-,\;HFe(CO)_4\;^-)$ react with transition metal alkyl $(CpMo(CO)_3(CH_3)$ to yield $CH_4\;and\;CH_3CHO$ in addition to the inorganic products $(CpMo(Co)_3\;^-$, etc.). The reaction of these anionic metal hydrides with CpMo(CO)3{CH2CH(CH2)2} may lead to an elucidation of the reaction mechanisms involved; the organic product distributions are among $CH_4,\;CH_2\;=\;CHCH_2CH_3$, and $CH_3CH(CH_2)_2$, depending upon the anionic metal hydride used. These anionic metal hydrides also are reported to undergo a hydride-halide exchange reaction with organic halides; therefore, these similar reactions have been compared in terms of leaving group ability $(CpMo(CO)_3\;^-\;vs.\;Br^-)$ and the mechanistic pathways.

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals (유무기 페로브스카이트 나노결정의 박리화에 의한 양자구속효과)

  • Choe, Hyeon Jeong;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.496-501
    • /
    • 2021
  • Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization (페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략)

  • Hwang, Eunhye;Kwon, Tae-Hyuk
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.

Effects of Fouling and Scaling on the Retention of Explosives in Surface Water by NF-the Role of Cake Enhanced Concentration Polarisation (지표수 조건의 나노여과공정에서 파울링 및 스케일링이 화약류 물질 잔류에 미치는 영향 연구 - 케익층 형성 및 농도분극 영향 분석)

  • Heo, Jiyong;Han, Jonghun;Lee, Heebum;Lee, Jongyeol;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2015
  • The combined impact of Dissolved Organic Matter (DOM) fouling and inorganic ($CaSO_4,Ca_3(PO_4)_2$) scaling on the retention of TNT (2, 4, 6-Trinitrotoluene), RDX (Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) and HMX (1, 3, 5, 7-Tetranitro-1, 3, 5, 7-tetrazocane) explosive contaminants by nano-filtration membrane were studied, since organic fouling and salt scaling are the major limitations for membrane filtration. Results reported here indicate that DOM fouling layer with a humic acid does not necessarily lead to an immediate loss of permeate flux but can result in a severe impact on the flux loss when both humic acid and inorganic scaltants were presented simultaneously. The $Ca_3(PO_4)_2$ mixed with humic acid showd most sever flux loss (42%) compared to that of only humic acid presence (8%). It could be a result that the scaling formation of the NF membrane was dominated by cake layer formation of DOM and it was along with pore blocking by the formation of crystals inside the porous active matrix of the NF membrane. In addition, these results indicated that the membrane selectivity of the explosives retention trended correlated with respect to increasing explosives size (listed by MW) based on greater steric interactions and followed the order (MW, g $mol^{-1}$; removal, %): HMX (296.15; 83%) ${\gg}$ RDX (222.12; 49%) ≋ TNT (227.13; 32%). Because the scaling and fouling layer could lead to a additional cake-enhanced concentration polarisation effect, the retention of explosives with the presence of humic acid in the feed solution and inorganic scaling formation on top of an organic fouling layer do not differ substantially retention from that of pure DI feed and NaCl solution.

Diagnosis of Coloration Status and Scientific Analysis for Pigments to Used Large Buddhist Painting(Gwaebultaeng) in Tongdosa Temple (통도사 괘불탱의 채색상태 및 사용 안료의 과학적 분석)

  • Lee, Jang Jon;Ahn, Ji Yoon;Yoo, Young Mi;Lee, Kyeong Min;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.431-442
    • /
    • 2017
  • The purpose of this study is to reveal that coloring status and the degree of damage and the kinds of pigments used in large buddhist painting (Gwaebultaeng) of Tongdosa temple using a scientific analysis methods. It was observed that the physical damage patterns of the Gwaebultaeng were folding, lifting, fading, and peeling. Lead red, cinnabar and organic pigments were used as red pigments. Malachite and atacamite were used as green pigments, azulite and lazulite were blue pigments, lead white and talc were white pigment. It is estimated that overlapping organic pigments on the lead white were used as the yellow pigment and carbon was the black pigment. Through the analysis of the particle status of the pigments, it was confirmed that different types of raw materials were used for the green pigment, and the crystal form was easily distinguishable. Also, the dark blue color and the light blue color differed from each other depending on the size and shape of the raw material particles. Yellow and purple colors were organic pigments which did not have a graininess. The yellow and purple colors were organic pigments free from the graininess, and the pigments of dark red pigments was found to be mixed with the orange color pigments and carbon particles.

Properties of Perovskite Materials and Devices Fabricated Using the Solvent Engineered One-Step Spin Coating Method (단일 스텝 스핀 코팅 방법에서 증발 제어 공정 변경에 따른 페로브스카이트 박막 물성 및 태양 전지 소자 특성 변화에 관한 연구)

  • Oh, Jungseock;Kwon, Namhee;Cha, DeokJoon;Yang, JungYup
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1208-1214
    • /
    • 2018
  • The one-step spin coating method is reported as an excellent thin film process because it can be easily used to fabricate high-quality methyl-ammonium lead tri-iodide ($MAPbI_3$) perovskite layers. One of the important things in the one-step spin coating method towards obtaining high-quality $MAPbI_3$ layers is the anti-solvent (AS) engineering, which consists of an one-step deposition of the $MAPbI_3$ film and dripping of the AS. The properties of the $MAPbI_3$ layer were found to be strongly influenced by the amount, dispensing speed, and spraying time of the AS solution. The $MAPbI_3$ solution was prepared by dissolving lead iodide and methyl-ammonium iodide in N,N-dimethylformamide and adding N,N-dimethyl sulfoxide. Diethyl ether (DE) was used for the AS solution. The results indicate that a $MAPbI_3$ layer appropriately sprayed with DE is beneficial for improving film quality and device efficiency because nucleation of $MAPbI_3$ layer is affected by the characteristics of DE, which affect the film's crystallinity, density, and surface morphology. The $MAPbI_3$ layer, which was optimized by using 0.7 mL of DE, a 3.03 mL/sec dispensing speed, and a 7 second time to spray after spinning showed the best efficiency of 13.74%, which was reproducible.

Effects of Inorganic Nutrients and Heavy Metals on Germination of the Green Alga, Ulva pertusa Kjellman (녹조 구멍갈파래 (Ulva pertusa Kjellman)의 발아에 미치는 무기영양염류 및 중금속의 영향)

  • 김장균;한태준
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2001
  • Growth optima and tolerance ranges of marine algae species nay vary greatly during the developmental stage. The establishment stage is clearly of great importance for each generation, affecting the performance of the adult population. The present study was aimed to determine the effect of various concentrations of inorganic nutrients and heavy metals on germination and germlings of Ulva pertusa Kjellman (Chlorophyta). Percent germination increased rapidly as irradiance level increased, reaching the maximum at 100 ${\mu}$mol m$\^$-2/s$\^$-1/ in both east and west seawater. Percent germination in the east seawater was higher than that in the west seawater at irradiances lower than 30 ${\mu}$mol m$\^$-2/s$\^$-1/, and there was no difference in percent germination between the two different seawaters at irradiances higher than 60 ${\mu}$mol m$\^$-2/s$\^$-1/. Germling growth increased in the both cases with increasing irradiances but no growth was found in the dark. Overall germling area was larger in the east seawater than in the west seawater. Number of cell increased with increasing irradiance and became light-saturated at 100 ${\mu}$mol m$\^$-2/s$\^$-1/ in the both cases. Germlings grown in the east seawater had more cells than those cultivated in the west seawater at irradiances lower than 60 ${\mu}$mol m$\^$-2/s$\^$-1/. In various combinations of nitrate and phosphate, percent germination increased with increasing nitrate concentrations irrespective of phosphate concentrations. At 3 days after inoculation, nitrate concentration of 2.5 ppm with all phosphate concentrations promoted germination. Area and number of cell of germlings increased with increasing nitrate concentrations in all phosphate concentrations. In various combinations of copper and lead, germination was delayed as copper concentrations increased in all lead concentrations. Percent germination was severely reduced at 1 ppm Cu$\^$2+/. Area and number of cell of germlings decreased with increasing copper concentrations in all lead concentrations. The highest copper concentration (1 ppm) clearly suppressed the germling growth in U. pertusa.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF