DOI QR코드

DOI QR Code

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals

유무기 페로브스카이트 나노결정의 박리화에 의한 양자구속효과

  • Choe, Hyeon Jeong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
  • 최현정 (충남대학교 신소재공학과) ;
  • 최지훈 (충남대학교 신소재공학과)
  • Received : 2021.07.15
  • Accepted : 2021.08.18
  • Published : 2021.09.27

Abstract

Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).

Keywords

Acknowledgement

This study was financially supported by faculty research abroad program of Chungnam National University in 2020.

References

  1. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013). https://doi.org/10.1021/nl400349b
  2. S. D. Stranks and H. J. Snaith, Nat. Nanotechnol., 10, 391 (2015). https://doi.org/10.1038/nnano.2015.90
  3. J. Z. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Adv. Mater., 27, 7162 (2015). https://doi.org/10.1002/adma.201502567
  4. M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, J.-H. Bae, S. K. Kwak, D. S. Kim and C. Yang, Science, 369, 1615 (2020). https://doi.org/10.1126/science.abb7167
  5. K. Lin, J. Xing, L. N. Quan, F. P. G. D. Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, Nature, 562, 245 (2018). https://doi.org/10.1038/s41586-018-0575-3
  6. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, Adv. Mater., 29, 1603885 (2017). https://doi.org/10.1002/adma.201603885
  7. R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G. Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun and Y. Zheng, Adv. Funct. Mater., 26, 7708 (2016). https://doi.org/10.1002/adfm.201602634
  8. X. Xu, X. Zhang, W. Deng, L. Huang, W. Wang, J. Jie and X. Zhang, ACS Appl. Mater. Interfaces, 10, 10287 (2018). https://doi.org/10.1021/acsami.7b17176
  9. A. Kirakosyan, J. Kim, S. W. Lee, I. Swathi, S. G. Yoon and J. Choi, Cryst. Growth Des., 17, 794 (2017). https://doi.org/10.1021/acs.cgd.6b01648
  10. A. Kirakosyan, S. Yun, S.-G. Yoon and J. Choi, Nanoscale, 10, 1885 (2018). https://doi.org/10.1039/C7NR06547G
  11. S. Yun, A. Kirakosyan, S. G. Yoon and J. Choi, ACS Sustainable Chem. Eng., 6, 3733 (2018). https://doi.org/10.1021/acssuschemeng.7b04092
  12. M. G. Jeon, S. Yun, A. Kirakosyan, M. R. Sihn, S. G. Yoon and J. Choi, ACS Sustainable Chem. Eng., 7, 19369 (2019). https://doi.org/10.1021/acssuschemeng.9b03153
  13. A. Kirakosyan, N. D. Chinh, M. R. Sihn, M G. Jeon, J. R. Jeong, D. Kim, J. H. Jang and J. Choi, J. Phys. Chem. Lett., 10, 4222 (2019). https://doi.org/10.1021/acs.jpclett.9b01587
  14. A. Kirakosyan, Y. Kim, M. R. Sihn, M.-G. Jeon, J.-R. Jeong and J. Choi, ChemNanoMat, 6, 1863 (2020). https://doi.org/10.1002/cnma.202000471
  15. M. R. Sihn, A. Kirakosyan, M.-G. Jeon and J. Choi, ChemComm, 57, 5055 (2021).
  16. A. Kirakosyan, M.-G. Jeon, C.-Y. Kim, Y. Kim and J. Choi, CrystEngComm, 23, 4434 (2021). https://doi.org/10.1039/D1CE00518A