• Title/Summary/Keyword: Informal mathematical knowledge

Search Result 26, Processing Time 0.023 seconds

A Short Discussion about Connection of Informal and Formal Mathematical Knowledge (비형식적 수학적 지식과 형식적 수학적 지식의 결합에 관한 소고)

  • 김진호
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.555-563
    • /
    • 2002
  • The purpose of this paper is to try formulating a working definition of connection of informal and formal mathematical knowledge. Many researchers have suggested that informal mathematical knowledge should be connected with school mathematics in the process of learning and teaching it. It is because informal mathematical knowledge might play a important role as a cognitive anchor for understanding school mathematics. To implement the connection of them we need to know what the connection means. In this paper, the connection between informal and formal mathematical knowledge refers to the making of relationship between common attributions involved with the two knowledge. To make it clear, it is discussed that informal knowledge consists of two properties of procedures and conceptions as well as formal mathematical knowledge does. Then, it is possible to make a connection of them. Now it is time to make contribution of our efforts to develop appropriate models to connect informal and formal mathematical knowledge.

  • PDF

Investigating Children's Informal Knowledge and Strategies: The Case of Fraction Division

  • Yeo, Sheunhyun
    • Research in Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.283-304
    • /
    • 2019
  • This paper investigates what informal knowledge and strategies fifth-grade students brought to a classroom and how much they had potential to solve fraction division story problems. The findings show that most of the participants were engaged to understand the meaning of fraction division prior to their formal instruction at school. In order to solve the story problems, the informal knowledge related to fractions as well as division was actively utilized in student's strategies and justification. Students also used various informal strategies from mental calculation, direct modeling, to relational thinking. Formal instructions about fraction division at schools can be facilitated for sense-making of this complex fraction division conception by unpacking informal knowledge and thinking they might bring to the classrooms.

First to Third Graders Have Already Established (분수 개념에 대한 초등학생들의 비형식적 지식 분석 - 1${\sim}$3학년 중심으로 -)

  • Oh, Yu-Kyeong;Kim, Jin-Ho
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.145-174
    • /
    • 2009
  • Based on the thinking that people can understand more clearly when the problem is related with their prior knowledge, the Purpose of this study was to analysis students' informal knowledge, which is constructed through their mathematical experience in the context of real-world situations. According to this purpose, the following research questions were. 1) What is the characteristics of students' informal knowledge about fraction before formal fraction instruction in school? 2) What is the difference of informal knowledge of fraction according to reasoning ability and grade. To investigate these questions, 18 children of first, second and third grade(6 children per each grade) in C elementary school were selected. Among the various concept of fraction, part-whole fraction, quotient fraction, ratio fraction and measure fraction were selected for the interview. I recorded the interview on digital camera, drew up a protocol about interview contents, and analyzed and discussed them after numbering and comment. The conclusions are as follows: First, students already constructed informal knowledge before they learned formal knowledge about fraction. Among students' informal knowledge they knew correct concepts based on formal knowledge, but they also have ideas that would lead to misconceptions. Second, the informal knowledge constructed by children were different according to grade. This is because the informal knowledge is influenced by various experience on learning and everyday life. And the students having higher reasoning ability represented higher levels of knowledge. Third, because children are using informal knowledge from everyday life to learn formal knowledge, we should use these informal knowledge to instruct more efficiently.

  • PDF

An Analysis of Elementary School Students' Informal Knowledge In Proportion (초등학생의 비례에 관한 비형식적 지식 분석)

  • Park, Sang-Eun;Lee, Dae-Hyun;Rim, Hae-Kyung
    • Communications of Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.345-363
    • /
    • 2010
  • The purpose of this study is to investigate and analyze informal knowledge of students who do not learn the conception of proportion and to identify how the informal knowledge can be used for teaching the conception of proportion in order to present an effective method of teaching the conception. For doing this, proportion was classified into direct and inverse proportion, and 'What are the informal knowledge of students?' were researched. The subjects of this study were 117 sixth-graders who did not have prior learning on direct and inverse proportion. A total eleven problems including seven for direct proportion and four for inverse proportion, all of them related to daily life. The result are as follows; Even though students didn't learn about proportion, they solve the problems of proportion using informal knowledge such as multiplicative reasoning, proportion reasoning, single-unit strategy etc. This result implies mathematics education emphasizes student's informal knowledge for improving their mathematical ability.

A Study on Alternative Formalization of Division of Fractions Using Informal Knowledge (비형식적 지식을 이용한 대안적인 분수 나눗셈의 형식화 방안에 관한 연구)

  • Baek Sun Su
    • Education of Primary School Mathematics
    • /
    • v.8 no.2 s.16
    • /
    • pp.97-113
    • /
    • 2004
  • The purpose of this study is to develop instructional methods for the formalized algorithm through informal knowledge in teaching division of fractions. The following results have been drawn from this study: First, before students learn formal knowledge about division of fractions, they knowledge or strategies to solve problems such as direct modeling strategies, languages to reason mathematically, and using operational expressions. Second, students could solve problems using informal knowledge which is based on partitioning. But they could not solve problems as the numbers involved in problems became complex. In the beginning, they could not reinvent invert-and-multiply rule only by concrete models. However, with the researcher's guidance, they can understand the meaning of a reciprocal number by using concrete models. Moreover, they had an ability to apply the pattern of solving problems when dividend is 1 into division problems of fractions when dividend is fraction. Third, instructional activities were developed by using the results of the teaching experiment performed in the second research step. They consist of student's worksheets and teachers' guides. In conclusion, formalizing students' informal knowledge can make students understand formal knowledge meaningfully and it has a potential that promote mathematical thinking. The teaching-learning activities developed in this study can be an example to help teachers formalize students' informal knowledge.

  • PDF

수세기를 통한 순열과 조합의 이해

  • Jung, In-Chul
    • East Asian mathematical journal
    • /
    • v.25 no.3
    • /
    • pp.247-262
    • /
    • 2009
  • Permutation and combination are the part of mathematics which can be introduced the pliability and diversity of thought. In prior studies of permutation and combination, there treated difficulties of learning, strategy of problem solving, and errors that students might come up with. This paper provides the method so that meaningful teaching and learning might occur through the systematic approach of permutation and combination. But there were little prior studies treated counting numbers that basic of mathematics' action. Therefore this paper tries to help the understanding of permutation and combination with the process of changing from informal knowledge to formal knowledge.

The Connection between Informal Knowledge and Formal Knowledge on Division (자연수 나눗셈에 관한 비형식적 지식과 형식적 지식의 연결 방안)

  • Lee, Jong-Euk
    • The Mathematical Education
    • /
    • v.47 no.1
    • /
    • pp.91-106
    • /
    • 2008
  • Interviews with 24 pupils in grade 1-2 were used to investigate awareness of the relation between situation and computation in simple quotitive and partitive division problems as informally experienced. Then it was suggested how to connect children's informal knowledge and formal knowledge of division. Most subjects counted cubes or made drawing, and related these methods to the situation described in the problems. In result, quotitive division was experienced as a dealing situation, where the number of items represented by the divisor was repeatedly taken from the whole number. And estimate-adjust was the most frequently displayed way of experiencing partitive division. Therefore, partitive division with its two measurement variables can be related to a measurement model. And children should be taught column algorithms for division with estimated-adjust which pupils used for partitive division problems.

  • PDF

A Case Study on Children's Informal Knowledge of the Fractional Multiplication (분수의 곱셈에서 비형식적 지식의 형식화 사례 연구)

  • Haek, Sun-Su;Kim, Won-Kyung
    • School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.139-168
    • /
    • 2005
  • The purpose of this study is to investigate children's informal knowledge of the fractional multiplication and to develop a teaching material connecting the informal and the formal knowledge. Six lessons of the pre-teaching material are developed based on literature reviews and administered to the 7 students of the 4th grade in an elementary school. It is shown in these teaching experiments that children's informal knowledge of the fractional multiplication are the direct modeling of using diagram, mathematical thought by informal language, and the representation with operational expression. Further, teaching and learning methods of formalizing children's informal knowledge are obtained as follows. First, the informal knowledge of the repeated sum of the same numbers might be used in (fractional number)$\times$((natural number) and the repeated sum could be expressed simply as in the multiplication of the natural numbers. Second, the semantic meaning of multiplication operator should be understood in (natural number)$\times$((fractional number). Third, the repartitioned units by multiplier have to be recognized as a new units in (unit fractional number)$\times$((unit fractional number). Fourth, the partitioned units should be reconceptualized and the case of disjoint between the denominator in multiplier and the numerator in multiplicand have to be formalized first in (proper fractional number)$\times$(proper fractional number). The above teaching and learning methods are melted in the teaching meterial which is made with corrections and revisions of the pre-teaching meterial.

  • PDF

An Analysis on the Elementary Students' Mathematical Thinking in the Mathematical Problem Solving Processes (수학 문제해결 과정에서 나타나는 초등학생들의 수학적 사고 분석)

  • Cho, Doo-Kyoung;Park, Man-Goo
    • The Mathematical Education
    • /
    • v.47 no.2
    • /
    • pp.169-180
    • /
    • 2008
  • The purpose of this study was to analyze the elementary students' mathematical thinking, which is found during mathematical problem solving processes based on mathematical knowledge, heuristics, control, and mathematical disposition. The participants were 8 fifth grade elementary students in Seoul. A qualitative case study was used for investigating the students' mathematical thinking. The data were coded according to the four components of the students' mathematical thinking. The results of the analyses concerning mathematical thinking of the elementary students were as follows: First, in terms of mathematical knowledge, the elementary students frequently used conceptual knowledge, procedural knowledge and informal knowledge during problem solving processes. Second, students tended not to find new heuristics or apply new one, but they only used the heuristics acquired from the experiences of the class and prior experiences. Third, control was found while students were solving problems. Last, mathematical disposition influenced on the mathematical problem solving processes. Teachers need to in-depth observations on the problem solving processes of students, which leads to teachers'effective assistance on facilitating students' problem solving skills.

  • PDF

A study on constructing a instructional sequence and content structure based on informal context of mathematical syllabus (비형식적 상황을 이용한 내용구조의 표현과 지도계열의 구성)

  • Shin, Hyun-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.357-366
    • /
    • 2005
  • This Study suggests some ideas how we develop a network of content structure based on informal context and method how we decide a sequence of mathematical syllabus from those Structures. 10th grade students in the process conceptual development was observed and interviewed in 2 hour teaching and learning experiment. Three related characteristics of student's thought in structuring math. Content and sequencing it were investigated as follows : (a) the reasoning that they do reflective abstraction well(or do not well) in acquisition of conceptual knowledge. (b) the method that teacher can use resuits in (a) to organize the content structure. (c) the ways that teacher find the process knowledge in informal content structure. That is, this study investigated the way we, curriculum designer, can create well defined content structure and instructional sequence strongly based on the learners' understanding.

  • PDF