• Title/Summary/Keyword: Industrial Vision

Search Result 647, Processing Time 0.034 seconds

An implementation of the automatic labeling rolling-coil using robot vision system (로봇 시각 장치를 이용한 압연코일의 라벨링 자동화 구현)

  • Lee, Yong-Joong;Lee, Yang-Bum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.497-502
    • /
    • 1997
  • In this study an automatic rolling-coil labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel mill. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moments invariant algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transferred by asynchronous communication method. Therefore, even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.

  • PDF

Obstacle Avoidance Method for Multi-Agent Robots Using IR Sensor and Image Information (IR 센서와 영상정보를 이용한 다 개체 로봇의 장애물 회피 방법)

  • Jeon, Byung-Seung;Lee, Do-Young;Choi, In-Hwan;Mo, Young-Hak;Park, Jung-Min;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1122-1131
    • /
    • 2012
  • This paper presents obstacle avoidance method for scout robot or industrial robot in unknown environment by using IR sensor and vision system. In the proposed method, robots share the information where the obstacles are located in real-time, thus the robots can choose the best path for obstacle avoidance. Using IR sensor and vision system, multiple robots efficiently evade the obstacles by the proposed cooperation method. No landmark is used at wall or floor in experiment environment. The obstacles don't have specific color or shape. To get the information of the obstacle, vision system extracts the obstacle coordinate by using an image labeling method. The information obtained by IR sensor is about the obstacle range and the locomotion direction to decide the optimal path for avoiding obstacle. The experiment was conducted in $7m{\times}7m$ indoor environment with two-wheeled mobile robots. It is shown that multiple robots efficiently move along the optimal path in cooperation with each other in the space where obstacles are located.

Development of Grading and Sorting System of Dried Oak Mushrooms via Color Computer Vision System (컬러 컴퓨터시각에 의거한 건표고 등급 선별시스템 개발)

  • Kim, S.C.;Choi, D.Y.;Choi, S.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.130-135
    • /
    • 2007
  • An on-line real time grading and sorting system for dried oak mushrooms was developed for on-site application. Quality grades of the mushrooms were determined according to an industrial specification. Three dimensional visual quality features were used for the grading. A progressive color computer vision system with white LED illumination was implemented to develop an algorithm to extract external quality patterns of the dried oak mushrooms. Cap (top) and gil (stem) surface images were acquired sequentially and side image was obtained using mirror. Algorithms for extracting size, roundness, pattern and color of the cap, thickness, color of the gil and amount of rolled edge of the dried mushroom were developed. Utilizing those quality factors normal and abnormal ones were classified and normal mushrooms were further classified into 30 different grades. The sorting device was developed using microprocessor controlled electro-pneumatic system with stainless buckets. Grading accuracy was around 97% and processing time was 0.4 s in average.

System for Measuring the Welding Profile Using Vision and Structured Light (비전센서와 구조화빔을 이용한 용접 형상 측정 시스템)

  • Kim, Chang-Hyeon;Choe, Tae-Yong;Lee, Ju-Jang;Seo, Jeong;Park, Gyeong-Taek;Gang, Hui-Sin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.11a
    • /
    • pp.50-56
    • /
    • 2005
  • The robot systems are widely used in the many industrial field as well as welding manufacturing. The essential tasks to operate the welding robot are the acquisition of the position and/or shape of the parent metal. For the seam tracking or the robot tracking, many kinds of contact and non-contact sensors are used. Recently, the vision is most popular. In this paper, the development of the system which measures the shape of the welding part is described. This system uses the line-type structured laser diode and the vision sensor. It includes the correction of radial distortion which is often found in the image taken by the camera with short focal length. The Direct Linear Transformation (DLT) method is used for the camera calibration. The three dimensional shape of the parent metal is obtained after simple linear transformation. Some demos are shown to describe the performance of the developed system.

  • PDF

Design and Analysis of Illumination Optics for Image Uniformity in Omnidirectional Vision Inspection System for Screw Threads (나사산 전면검사 비전시스템의 영상 균일도 향상을 위한 조명 광학계 설계 및 해석)

  • Lee, Chang Hun;Lim, Yeong Eun;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Precision screws have a wide range of industrial applications such as electrical and automotive products. To produce screw threads with high precision, not only high precision manufacturing technology but also reliable measurement technology is required. Machine vision systems have been used in the automatic inspection of screw threads based on backlight illumination, which cannot detect defects on the thread surface. Recently, an omnidirectional inspection system for screw threads was developed to obtain $360^{\circ}$ images of screws, based on front light illumination. In this study, the illumination design for the omnidirectional inspection system was modified by adding a light shield to improve the image uniformity. Optical simulation for various shield designs was performed to analyze image uniformity of the obtained images. The simulation results were analyzed statistically using response surface method, from which optical performance of the omnidirectional inspection system could be optimized in terms of image quality and uniformity.

A Study on Representation Techniques of Visual Tactility in the Surface of Contemporary Architectutre (현대건축의 표면에 나타난 시각적 촉각의 표현기법에 관한 연구)

  • Jeon, You-Chang;Kim, Sung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.139-147
    • /
    • 2008
  • Modern architecture's optical mechanism focused on Ocuularcentrism neglects the tactility of vision and tends to eliminate the optical and tactile dualism of traditional spaces by representing spaces and surfaces that are abstract and cold-hearted. In other words, all sensory experiences, except for visual experiences, are eliminated to make it impossible to create the substantial core of architecture that combines time, image, and surface textures. The fast-changing social trends, the emergence of new materials and technologies, and the corresponding development of various types of media since the Industrial Revolution have changed the paradigm of human perception and representation. With the development of media, other sensory experiences besides visual experience have been stressed and human perception has converted from single perspective to complex perspective. In result, new sensory items, such as visual tactility, have replaced the traditional vision-centered hierarchy. The composition of architectural surfaces has represented the functional and commercial needs of technology, structure, as well as the socio-cultural needs of the community. In contemporary times, it is being changed and developed by the new tactility and the corresponding expression of modern architecture. Based on the visual representation of tactility of architectural surface, this study used a composition of surface that combines various events, meanings, and senses to examine how architecture can mediate and reproduce viewers' visual experiences and discover the existential relationship between architecture and men.

Design of CV-based Realtime Vision Analysis System for Effective AR Vision Control (효율적인 AR 영상 제어를 위한 CV 기반 실시간 영상 분석 시스템 개발)

  • Jung, Sung-Mo;Song, Jae-Gu;Lim, Ji-Hoon;Kim, Seok-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.172-175
    • /
    • 2010
  • 최근 스마트폰 기반의 AR(Augmented Reality) 기술이 이슈화됨에 따라 센서 기반의 AR 콘텐츠들이 빠르게 등장하고 있다. 그러나 센서 기반의 AR 기술인 P-AR(Pseudo AR)은 본질적인 AR이 구현되지 못하는 현실의 대안으로 사용되고 있으며, 실제 영상제어를 통한 AR 기술인 V-AR(Vision AR)은 기술개발이 진행 중에 있다. 이러한 예로 ARToolkit 등 AR을 제어할 수 있는 툴들이 개발 진행 중인데, 센서를 통해 이벤트를 발생시킬 수 있는 P-AR 기술에 반해 V-AR은 영상 자체에서 이벤트를 제어해야 하므로 상대적으로 구현이 어렵기 때문이다. V-AR에서 영상을 제어하기 위해서는 기본적으로 영상에서 잡음 제거, 특정객체 인식, 객체 분석 등이 요구된다. 따라서 본 논문에서는 향후 다가올 V-AR 기술에 대비하여 영상에서 배경 제거, 특정객체 인식, 객체 분석 등 효율적인 AR 영상제어를 할 수 있는 CV 기반 실시간 영상 분석 시스템의 프로토타입을 개발하였다.

  • PDF

Perception Method of the Marking Location for Automation of Billet Marking Processes (빌릿 마킹 공정의 자동화를 위한 마킹 위치 인식 방법)

  • Park Jin-Woo;Yook Hyunho;Che Wooseong;Boo Kwangsuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.127-134
    • /
    • 2005
  • The machine vision has been applied to a number of industrial applications for quality control and automations to improve the manufacturing processes. In this paper, the automation system using the machine vision is developed, which is applicable to the marking process in a steel production process line. The working environment is very harsh to workers so that the automatic system in the steel industry is required increasingly. The developed automatic marking system consists of several mechanical and electrical elements such as the laser position detecting sensor system fur a structured laser beam which is projected to the billet in order to detect the geometry of the billet. An image processing algorithm has been developed to percept the two center positions of a camera and a billet, respectively, and to align two centers. A series of experiments has been conducted to investigate the performance of the proposed algorithm. The results show that two centers of the camera and the billet could be detected very well and differences between two center positions could be also decreased via the proposed location error decreasing algorithm.

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

Accuracy Analysis of Construction Worker's Protective Equipment Detection Using Computer Vision Technology (컴퓨터 비전 기술을 이용한 건설 작업자 보호구 검출 정확도 분석)

  • Kang, Sungwon;Lee, Kiseok;Yoo, Wi Sung;Shin, Yoonseok;Lee, Myungdo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • According to the 2020 industrial accident reports of the Ministry of Employment and Labor, the number of fatal accidents in the construction industry over the past 5 years has been higher than in other industries. Of these more than 50% of fatal accidents are initially caused by fall accidents. The central government is intensively managing falling/jamming protection device and the use of personal protective equipment to eradicate the inappropriate factors disrupting safety at construction sites. In addition, although efforts have been made to prevent safety accidents with the proposal of the Special Act on Construction Safety, fatalities on construction sites are constantly occurring. Therefore, this study developed a model that automatically detects the wearing state of the worker's safety helmet and belt using computer vision technology. In considerations of conditions occurring at construction sites, we suggest an optimization method, which has been verified in terms of the accuracy and operation speed of the proposed model. As a result, it is possible to improve the efficiency of inspection and patrol by construction site managers, which is expected to contribute to reinforcing competency of safety management.