• Title/Summary/Keyword: Indium precursor

Search Result 31, Processing Time 0.025 seconds

The Studies on synthesis of $SnO_2$ doped $In_2O_3$ (ITO: Indium Tin Oxide) powder by spray pyrolysis (분무열분해법(Spray Pyrolysis)에 의한 주석산화물이 도핑된 $In_2O_3$(ITO: Indium Tin Oxide)의 분말 제조에 대한 연구)

  • Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.694-702
    • /
    • 2014
  • The micron-sized ITO(indium tin oxide) particles were prepared by spray pyrolysis from aqueous precursor solutions for indium, and tin and organic additives solution. Organic additives solution with citric acid(CA) and ethylene glycol(EG) were added to aqueous precursor solution for Indium and Tin. The obtained ITO particles prepared by spray pyrolysis from the aqueous solution without organic additives solution had spherical and filled morphologies whereas the obtained ITO particles with organic additives solution had more hollow and porous morphologies with increasing mole of organic additives. The micron-sized ITO particle with organic additives was changed fully to nano-sized ITO particle whereas the micron-sized ITO particle without organic additives was not changed fully to nano-sized ITO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. The size of primary ITO particle by Debye-Scherrer formula and surface resistance of ITO pellet were measured.

Study on Solution Processed Indium-Yttrium-Oxide Thin-Film Transistors Using Poly (Methyl Methacrylate) Passivation Layer (PMMA 보호막을 이용한 용액 공정 기반의 인듐-이티륨-산화물 트랜지스터에 관한 연구)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.413-416
    • /
    • 2017
  • We investigated solution-processed indium-yttrium-oxide (IYO) TFTs using apoly (methyl methacrylate) (PMMA) passivation layer. The IYO semiconductor solution was prepared with 0.1 M indium nitrate hydrate and 0.1 M yttrium acetate dehydrate as precursor solutions. The solution-processed IYO TFTs showed good performance: field-effect mobility of $13.13cm^2/Vs$, a threshold voltage of 8.2 V, a subthreshold slope of 0.93 V/dec, and a current on-to-off ratio of $7.2{\times}10^6$. Moreover, the PMMA passivation layers used to protectthe IYO active layer of the TFTs, did so without deteriorating their performance under ambient conditions; their operational stability and electrical properties also improved by decreasing leakage current.

Electrochemical Characteristics of Indium Tin Oxide Nanoparticles prepared by Sol-gel Combustion Hybrid Method

  • Chaoumead, Accarat;Choi, Woo-Jin;Lee, Dong-Hoon;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.414-417
    • /
    • 2011
  • Indium tin oxide (In:$SnO_2$) nanoparticles were synthesized employing a sol-gel combustion method followed by annealing. The TG, XRD, XPS and SEM results of the precursor powders and calcinated In:$SnO_2$ nanoparticles were investigated. Crystal structures were examined by powder XRD, and those results show shaper intensity peak at $25.6^{\circ}$ ($2{\theta}$) of $SnO_2$ by increased annealing temperature. A particle morphology and size was examined by SEM, and the size of the nanoparticles was found to be in the range of 20~30nm. In:$SnO_2$ films could controlled by nanoparticle material at various annealing temperature. The sol-gel combustion method was offered simple and effective route for the synthesis of In:$SnO_2$ nanoparticles.

Energy-band-gap Variation of InxGaN1-x Thin Films with Indium Composition (인듐량에 따른 InxGaN1-x 박막의 에너지밴드갭 변화)

  • Park, Ki-Cheol;Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.677-681
    • /
    • 2009
  • $In_xGa_{1-x}N$ alloys with 20-nm-thickness were deposited onto Mg:GaN/AlN/SiC substrates by MOCVD at $800\;^{\circ}C$. TMGa, TMIn and $NH_3$ were used as the precursor of gallium, indium and nitrogen, respectively. The mole ratio of indium in $In_xGa_{1-x}N$ films varied between 0 and 0.2. The energy-band-gaps of the films were obtained from the photoluminescence and cathodoluminescence peaks. The mole ratios of $In_xGa_{1-x}N$ films were calculated by applying Vegard's law to XRD results. The energy-band-gap versus indium composition plot for $In_xGa_{1-x}N$ alloys were well fit with a bowing parameter of 2.27.

Low-Voltage Driving of Indium Zinc Oxide Transistors with Atomic Layer Deposited High-k Al2O3 as Gate Dielectric (원자층 증착을 이용한 고 유전율 Al2O3 절연 박막 기반 Indium Zinc 산화물 트랜지스터의 저전압 구동)

  • Eom, Ju-Song;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.432-436
    • /
    • 2017
  • IZO transistors with $Al_2O_3$ as gate dielectrics have been investigated. To improve permittivity in an ambient dielectric layer, we grew $Al_2O_3$ by atomic layer deposition directly onto the substrates. Then, we prepared IZO semiconductor solutions with 0.1 M indium nitrate hydrate [$In(NO_3)_3{\cdot}xH_2O$] and 0.1 M zinc acetate dehydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] as precursor solutions; the IZO solution made with a molar ratio of 7:3 was then prepared. It has been found that these oxide transistors exhibit low operating voltage, good turn-on voltage, and an average field-effect mobility of $0.90cm^2/Vs$ in ambient conditions. Studies of low-voltage driving of IZO transistors with atomic layer-deposited high-k $Al_2O_3$ as gate dielectric provide data of relevance for the potential use of these materials and this technology in transparent display devices and displays.

Indium-Zinc Oxide Thin Film Transistors Based N-MOS Inverter (Indium-Zinc 산화물 박막 트랜지스터 기반의 N-MOS 인버터)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.437-440
    • /
    • 2017
  • We report on amorphous thin-film transistors (TFTs) with indium zinc oxide (IZO) channel layers that were fabricated via a solution process. We prepared the IZO semiconductor solution with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions. The solution- processed IZO TFTs showed good performance: a field-effect mobility of $7.29cm^2/Vs$, a threshold voltage of 4.66 V, a subthreshold slope of 0.48 V/dec, and a current on-to-off ratio of $1.62{\times}10^5$. To investigate the static response of our solution-processed IZO TFTs, simple resistor load-type inverters were fabricated by connecting a $2-M{\Omega}$ resistor. Our IZOTFTbased N-MOS inverter performed well at operating voltage, and therefore, isa good candidate for advanced logic circuits and display backplane.

Electrical Characteristics of Resistive-Switching-Memory Based on Indium-Zinc-Oxide Thin-Film by Solution Processing (용액 공정을 이용한 Indium-Zinc-Oxide 박막 기반 저항 스위칭 메모리의 전기적 특성)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.484-490
    • /
    • 2017
  • We investigated the rewritable operation of a non-volatile memory device composed of Al (top)/$TiO_2$/indium-zinc-oxide (IZO)/Al (bottom). The oxygen-deficient IZO layer of the device was spin-coated with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions, and the $TiO_2$ layer was fabricated by atomic layer deposition. The oxygen vacancies IZO layer of an active component annealed at $400^{\circ}C$ using thermal annealing and it was proven to be in oxygen vacancies and oxygen binding environments with OH species and heavy metal ions investigated by X-ray photoelectron spectroscopy. The device, which operates at low voltages (less than 3.5 V), exhibits non-volatile memory behavior consistent with resistive-switching properties and an ON/OFF ratio of approximately $3.6{\times}10^3$ at 2.5 V.

Synthesis of indium hydroxide powders by a precipitation method (침전법을 이용한 Indium hydroxide 분말의 합성 연구)

  • Choi, Eun-Kyoung;Lee, Won-Jun;Han, Kyu-Sung;Kim, Ung-Soo;Kim, Jin-Ho;Hwang, Kwang-Teak;Kim, Jong-Young;Hwang, Hae-Jin;Shim, Kwang-Bo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.122-129
    • /
    • 2017
  • For the production of a high-density ITO target, $In_2O_3$ powders with a small particle size and low agglomeration should be synthesized. The purpose of this study is to control the size and shape of the Indium hydroxide precursor which affects the properties of the $In_2O_3$ powder. As a starting raw material, Indium metal was dissolved in a Nitric acid ($HNO_3$) solution. The effect of concentration, pH, and temperature on the properties of Indium hydroxide was investigated using ammonium hydroxide as a precipitant. Crystallite size of each sample was analyzed by X-ray diffraction and the shape and the size of the powder was analyzed by transmission electron microscopy. As a result, the particle size of Indium hydroxide was increased with increase in the concentration of $In(NO_3)_3$ and the particle size and shape of the Indium hydroxide remained unchanged with increase in the pH of the solution. The particle size increased with increase in the precipitation temperature during precipitation.

Fabrication of ITO Thin Film by Sol-Gel Method (Sol-Gel 법을 이용한 ITO박막의 제조)

  • Kim Gie-Hong;Lee Jae-Ho;Kim Young-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.11-14
    • /
    • 2000
  • Transparent conducting ITO thin films have been studied and developed for the solar cell substrate or LCD substrate. ITO thin film has been mostly fabricated by high cost sputtering method. In this research, sol-gel method is applied to fabricate ITO thin film at lower cost. The research is focused on the establishment of process condition and development of precursor. Organic sol was made of indium tri-isopropoxide dissolved in ethylene glycol monoethyl ether. The hydrolysis was controled by addition of acetyl acetone. Tin(IV) chloride was added as dopant. Inorganic sol was made of indium acetate dissolve din normal propanol. Spin coating technique was applied to coat ITO on borosilicate glass. The resistivity of ITO thin film was approximately $0.01\Omega{\cdot}cm$ and the transmittance is higher than $90\%$ in a visible range.

Deposition of CuInSe2 Thin Films Using Stable Copper and Indium-selenide Precursors through Two-stage MOCVD Method

  • Park, Jong-Pil;Kim, Sin-Kyu;Park, Jae-Young;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.853-856
    • /
    • 2009
  • Highly polycrystalline copper indium diselenide (CuInSe2, CIS) thin films were deposited on glass or ITO glass substrates by two-stage metal organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cuand In/Se-containing precursors. First, pure Cu thin film was prepared on glass or ITO glass substrates by using a single-source precursor, bis(ethylbutyrylacetate)copper(II) or bis(ethylisobutyrylacetato)copper(II). Second, on the resulting Cu films, tris(N,N-ethylbutyldiselenocarbamato)indium(III) was treated to produce CuInSe2 films by MOCVD method at 400 ${^{\circ}C}$. These precursors are very stable in ambient conditions. In our process, it was quite easy to obtain high quality CIS thin films with less impurities and uniform thickness. Also, it was found that it is easy to control the stoichiometric ratio of relevant elements on demands, leading to Cu or In rich CIS thin films. These CIS films were analyzed by XRD, SEM, EDX, and Near-IR spectroscopy. The optical band gap of the stoichiometric CIS films was about 1.06 eV, which is within an optimal range for harvesting solar radiation energy.