DOI QR코드

DOI QR Code

Synthesis of indium hydroxide powders by a precipitation method

침전법을 이용한 Indium hydroxide 분말의 합성 연구

  • Choi, Eun-Kyoung (Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Won-Jun (Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Ung-Soo (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Teak (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jong-Young (Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Hae-Jin (School of Material Science and Engineering, Inha University) ;
  • Shim, Kwang-Bo (Department of Materials Science and Engineering, Hanyang University) ;
  • Cho, Woo-Seok (Korea Institute of Ceramic Engineering and Technology)
  • Received : 2017.05.24
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

For the production of a high-density ITO target, $In_2O_3$ powders with a small particle size and low agglomeration should be synthesized. The purpose of this study is to control the size and shape of the Indium hydroxide precursor which affects the properties of the $In_2O_3$ powder. As a starting raw material, Indium metal was dissolved in a Nitric acid ($HNO_3$) solution. The effect of concentration, pH, and temperature on the properties of Indium hydroxide was investigated using ammonium hydroxide as a precipitant. Crystallite size of each sample was analyzed by X-ray diffraction and the shape and the size of the powder was analyzed by transmission electron microscopy. As a result, the particle size of Indium hydroxide was increased with increase in the concentration of $In(NO_3)_3$ and the particle size and shape of the Indium hydroxide remained unchanged with increase in the pH of the solution. The particle size increased with increase in the precipitation temperature during precipitation.

고밀도 ITO 타겟 제조를 위해 입자의 크기가 미세하면서도 응집성이 적은 $In_2O_3$ 분말을 합성해야 한다. 본 실험에서는 $In_2O_3$ 분말의 특성에 영향을 미치는 전구체 Indium hydroxide 분말의 크기와 형상을 제어하는 것에 목적을 두고 있다. 출발 물질로써 Indium metal을 질산($HNO_3$)과 증류수의 혼합용액에 용해시켜 $In(NO_3)_3$ 용액을 만들었다. 침전제로 수산화암모늄($NH_4OH$)을 사용하여 농도, pH, 온도가 Indium hydroxide 특성에 미치는 영향을 분석하였다. X-ray diffraction으로 각 시료의 결정상을 분석하고 Crystallite size를 계산하였으며, TEM으로 입자의 형상과 크기를 분석하였다. 그 결과 $In(NO_3)_3$ 농도가 증가할수록 얻어지는 Indium hydroxide의 입자크기는 증가하였고 일정한 농도의 $In(NO_3)_3$ 용액에서 침전 pH 변화에 따른 Indium hydroxide의 입자크기와 형상의 변화는 관찰되지 않았다. 침전 시 온도가 상승할수록 입자크기는 증가하였다.

Keywords

References

  1. H. Kobayashi, T. Ishida, Y. Nakato and H. Tsubomura, "Mechanism of carrier transport in highly efficient solar cells having indium tin oxide/Si junctions", J. Appl. Phys. 69 (1991) 1736. https://doi.org/10.1063/1.347220
  2. V.A. Dao, H.W. Choi, J.K. Heo, H.S. Park, K.C. Yoon, Y.S. Lee, Y.K. Kim, N. Lakshminarayan and J.S. Yi, "rf-Magnetron sputtered ITO thin films for improved heterojunction solar cell applications", Curr. Appl. Phys. 10 (2010) 506. https://doi.org/10.1016/j.cap.2010.02.019
  3. S.K. Park, J.I. Han, W.K. Kim and M.G. Kwak, "Deposition of indium-tin-oxide films on polymer substrates for application in plastic-based flat panel displays", Thin Solid Films 397 (2001) 49. https://doi.org/10.1016/S0040-6090(01)01489-4
  4. B.H. Lee, I.G. Kim, S.W. Cho and S.H. Lee, "Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application", Thin Solid Films 302 (1997) 25. https://doi.org/10.1016/S0040-6090(96)09581-8
  5. J.J. Xu, A.S. Shaikh and R.W. Vest, "Indium tin oxide film from metallo-organic precursors", Thin Solid Films 161 (1988) 273. https://doi.org/10.1016/0040-6090(88)90259-3
  6. Y. Djaoued, V.H. Phong, S. Badilescu, P.V. Ashrit, F.E. Girouard and V.V. Truoung, "Sol-gel-prepared ITO films for electrochromic systems", Thin Solid Films 293 (1997) 108. https://doi.org/10.1016/S0040-6090(96)09060-8
  7. A.L. Dawar and J.C. Joshi, "Semiconducting transparent thin films: their properties and applications", J. Mater. Sci. 19 (1984) 1. https://doi.org/10.1007/BF02403106
  8. B.L. Gehman, S. Johnson, T. Rudoph, M. Scherer, M. Weigert and R. Werner, "Influence of manufacturing process of indium tin oxide sputtering targets on sputtering behavior", Thin Solid Films 220 (1992) 333. https://doi.org/10.1016/0040-6090(92)90594-2
  9. B.G. Lewis and D.C. Paine, "Applications and processing of transparent conducting oxides", Mater. Res. Bull. 25 (2000) 22.
  10. K.H. Song, S.C. Park and J.G. Nam, "Tin oxide powder, manufacturing method there of, and manufacturing method of high density indium tin oxide target using the same", Patents of Korea 0075991 (2002).
  11. J.Y. Jung, S.H. Kim, E.T. Kang, K.S. Han, J.H. Kim, K.T. Hwang and W.S. Cho, "Synthesis of nano-sized $Ga_2O_3$ powders by polymerized complex method", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 302. https://doi.org/10.6111/JKCGCT.2013.23.6.302
  12. Y.B. Choi, J.H. Son, J.K. Lee and D.S. Bae, "Synthsis and characterization of potassium titanate whisker by hydrothermal process", J. Korean Cryst. Growth Cryst. Technol. 27 (2017) 9.
  13. J.Y. Jung, S.H. Kim, E.T. Kang, K.S. Han, J.H. Kim, K.T. Hwang and W.S. Cho, "Synthesis of $Ga_2O_3$ powders by precipitation method", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 8. https://doi.org/10.6111/JKCGCT.2014.24.1.008
  14. C.F. Baes Jr. and R.E. Mesmer, "The hydrolysis of cations" (Krieger Publishing Company, Malabar Florida, 1986) 321.
  15. M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions" (Pergamon Press Ltd., Headington Hill Hall, Oxford, London, 1966) 441.