DOI QR코드

DOI QR Code

Low-Voltage Driving of Indium Zinc Oxide Transistors with Atomic Layer Deposited High-k Al2O3 as Gate Dielectric

원자층 증착을 이용한 고 유전율 Al2O3 절연 박막 기반 Indium Zinc 산화물 트랜지스터의 저전압 구동

  • Eom, Ju-Song (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • 엄주송 (충북대학교 전자정보대학) ;
  • 김성진 (충북대학교 전자정보대학)
  • Received : 2017.01.12
  • Accepted : 2017.04.12
  • Published : 2017.07.01

Abstract

IZO transistors with $Al_2O_3$ as gate dielectrics have been investigated. To improve permittivity in an ambient dielectric layer, we grew $Al_2O_3$ by atomic layer deposition directly onto the substrates. Then, we prepared IZO semiconductor solutions with 0.1 M indium nitrate hydrate [$In(NO_3)_3{\cdot}xH_2O$] and 0.1 M zinc acetate dehydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] as precursor solutions; the IZO solution made with a molar ratio of 7:3 was then prepared. It has been found that these oxide transistors exhibit low operating voltage, good turn-on voltage, and an average field-effect mobility of $0.90cm^2/Vs$ in ambient conditions. Studies of low-voltage driving of IZO transistors with atomic layer-deposited high-k $Al_2O_3$ as gate dielectric provide data of relevance for the potential use of these materials and this technology in transparent display devices and displays.

Keywords

References

  1. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimental, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 17, 590 (2005). [DOI: https://doi.org/10.1002/adma.200400368]
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https:// doi.org/10.1038/nature03090]
  3. F. Jaehnike, D. V. Pham, R. Anselmann, C. Bock, and U. Kunze, ACS Appl. Mater. Interfaces, 7, 14011 (2015). [DOI: https://doi.org/10.1021/acsami.5b03105]
  4. M. K. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 90, 212114 (2007). [DOI: https://doi.org/10.1063/1.2742790]
  5. M. Rockelé, D. V. Pham, J. Steiger, S. Botnaras, D. Weber, J. Vanfleteren, T. Sterken, D. Cuypers, S. Steudel, K. Myny, S. Schols, B. van de Putten, J. Genoe, and P. Heremans, J. Soc. Inf. Disp., 20, 499 (2012). [DOI: https://doi.org/10.1002/jsid.114]
  6. J. M. Ball, P. H. Wobkenberg, F. Colleaux, M. Heeney, J. E. Anthony, I. McCulloch, D.D.C. Bradley, and T. D. Anthopoulos, Appl. Phys. Lett., 95, 103310 (2009). [DOI: https://doi.org/10.1063/1.3212736]
  7. P. H. Wobkenberg, J. Ball, F. B. Kooistra, J. C. Hummelen, D. M. de Leeuw, D.D.C. Bradley, and T. D. Anthopoulos, Appl. Phys. Lett., 93, 013303 (2008). [DOI: https://doi.org/10.1063/1.2954015]
  8. M. Benwadih, J. A. Chroboczek, G. Ghibaudo, R. Coppard, and D. Vuillaume, J. Appl. Phys., 115, 214501 (2014). [DOI: https://doi.org/10.1063/1.4880163]
  9. H. U. Li and T. N. Jackson, IEEE Electron Device Lett., 36, 35 (2015). [DOI: https://doi.org/10.1109/led.2014.2371011]
  10. X. Yu, J. Smith, N. Zhou, L. Zeng, P. Guo, Y. Xia, A. Alvarez, S. Aghion, H. Lin, J. Yu, R.P.H. Chang, M. J. Bedzyk, R. Ferragut, T. J. Marks, and A. Facchetti, Proc. Natl. Acad. Sci. U.S.A., 112, 3217 (2015). [DOI: https://doi.org/10.1073/pnas.1501548112]
  11. J. Socratous, K. K. Banger, Y. Vaynzof, A. Sadhanala, A. D. Brown, A. Sepe, U. Steiner, and H. Sirringhaus, Adv. Funct. Mater., 25, 1873 (2015). [DOI: https://doi.org/10.1002/adfm.201404375]
  12. Z. Qi, J. Cao, H. Li, L. Ding, and J. Wang, Adv. Funct. Mater., 25, 3138 (2015). [DOI: https://doi.org/10.1002/adfm.201500525]
  13. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987). [DOI: https://doi.org/10.1063/1.98799]
  14. D. Platz, E. A. Tholén, D. Pesen, and D. B. Haviland, Appl. Phys. Lett., 92, 153106 (2008). [DOI: https://doi.org/10.1063/1.2909569]
  15. J. Tardy, M. Erouel, A. L. Deman, A. Gagnaire, V. Teodorescu, M. G. Blanchin, B. Canut, A. Barau, and M. Zaharescu, Microelectron. Reliab., 47, 372 (2007). [DOI: https://doi.org/10.1016/j.microrel.2006.01.012]
  16. G. Adamopoulos, S. Thomas, P. H. Wobkenberg, D.D.C. Bradley, M. A. McLachlan, and T. D. Anthopoulos, Adv. Mater., 23, 1894 (2011). [DOI: https://doi.org/10.1002/adma.201003935]
  17. A. Hardy, S. Van Elshocht, C. Adelmann, T. Conard, A. Franquet, O. Douheret, I. Haeldermans, J. D'Haen, S. D. Gendt, M. Caymax, M. Heyns, M. D'Olieslaeger, M.K.V. Bael, and Thin Solid Films, 516, 8343 (2008). [DOI: https://doi.org/10.1016/j.tsf.2008.04.017]
  18. S. Clima, G. Pourtois, A. Hardy, S. Van Elshocht, M. K. Van Bael, S. De Gendt, D. J. Wouters, M. Heyns, and J. A. Kittl, J. Electrochem. Soc., 157, G20 (2010). [DOI: https://doi.org/10.1149/1.3253583]
  19. N. Avci, P. F. Smet, J. Lauwaert, H. Vrielinck, and D. Poelman, J. Sol-Gel Sci. Technol., 59, 327 (2011). [DOI: https://doi.org/10.1007/s10971-011-2505-9]
  20. J. H. Park, K. Kim, Y. B. Yoo, S. Y. Park, K. H. Lim, K. H. Lee, H. K. Baik, and Y. S. Kim, J. Mater. Chem. C, 1, 7166 (2013). [DOI: https://doi.org/10.1039/C3TC 31589D]
  21. J. Sheng, H. J. Lee, S. Oh, and J. S. Park, ACS Appl. Mater. Interfaces, 8, 33821 (2016). [DOI: https://doi.org/10.1021/acsami.6b11774]
  22. C. Y. Koo, K. Song, T. Jun, D. Kim, Y. Jeong, S. H. Kim, J. Ha, and J. Moon, J. Electrochem. Soc., 157, J111 (2010). [DOI: https://doi.org/10.1149/1.3298886]