• Title/Summary/Keyword: Impulsive functional differential equations

Search Result 19, Processing Time 0.022 seconds

UNIQUENESS OF SOLUTION FOR IMPULSIVE FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

  • Singhal, Sandeep;Uduman, Pattani Samsudeen Sehik
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.171-177
    • /
    • 2018
  • In this research paper considering a differential equation with impulsive effect and dependent delay and applied Banach fixed point theorem using the impulsive condition to the impulsive fractional functional differential equation of an order ${\alpha}{\in}(1,2)$ to get an uniqueness solution. At last, theorem is verified by using a numerical example to illustrate the uniqueness solution.

EXISTENCE OF THREE POSITIVE PERIODIC SOLUTIONS OF NEUTRAL IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Yuji;Xia, Jianye
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.243-256
    • /
    • 2010
  • This paper is concerned with the neutral impulsive functional differential equations $$\{{x'(t)\;+\;a(t)x(t)\;=\;f(t,\;x(t\;-\;\tau(t),\;x'(t\;-\;\delta(t))),\;a.e.\;t\;{\in}\;R, \atop {\Delta}x(t_k)\;=\;b_kx(t_k),\;k\;{\in}\;Z.$$ Sufficient conditions for the existence of at least three positive T-periodic solution are established. Our results generalize and improve the known ones. Some examples are presented to illustrate the main results.

BOUNDEDNESS RESULTS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

  • LI HUA;LUO ZHIGUO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.261-272
    • /
    • 2005
  • In this paper, boundedness criteria are established for solutions of a class of impulsive functional differential equations with infinite delays of the form $x'(t) = F(t, x(\cdot)), t > t^{\ast} {\Delta}x(t_{k})= I(t_{k}, x(t_{k}^{-})), k = 1,2,...$ By using Lyapunov functions and Razumikhin technique, some new Razumikhin-type theorems on boundedness are obtained.

EXISTENCE, UNIQUENESS AND STABILITY OF IMPULSIVE STOCHASTIC PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

  • Anguraj, A.;Vinodkumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.739-751
    • /
    • 2010
  • This article presents the result on existence, uniqueness and stability of mild solution of impulsive stochastic partial neutral functional differential equations under sufficient condition. The results are obtained by using the method of successive approximation.

CONTROLLABILITY OF SECOND-ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

  • Arthi, Ganesan;Balachandran, Krishnan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1271-1290
    • /
    • 2011
  • The purpose of this paper is to investigate the controllability of certain types of second order nonlinear impulsive systems with statedependent delay. Sufficient conditions are formulated and the results are established by using a fixed point approach and the cosine function theory Finally examples are presented to illustrate the theory.

ULAM STABILITIES FOR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS

  • Sandhyatai D. Kadam;Radhika Menon;R. S. Jain;B. Surendranath Reddy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.197-208
    • /
    • 2024
  • In the present paper, we establish Ulam-Hyres and Ulam-Hyers-Rassias stabilities for nonlinear impulsive integro-differential equations with non-local condition in Banach space. The generalization of Grownwall type inequality is used to obtain our results.

EXISTENCE AND UNIQUENESS RESULT FOR RANDOM IMPULSIVE STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH FINITE DELAYS

  • DIMPLEKUMAR, CHALISHAJAR;K., RAMKUMAR;K., RAVIKUMAR
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.5_6
    • /
    • pp.233-247
    • /
    • 2022
  • This manuscript addressed, the existence and uniqueness result for random impulsive stochastic functional differential equations with finite time delays. The study of random impulsive stochastic system is a new area of research. We interpret the meaning of a stochastic derivative and how it differs from the classical derivative. We prove the existence and uniqueness of mild solutions to the equations by using the successive approximation method. We conclude the article with some interesting future extension. This work extends the work of [18, 12, 20]. Finally, an example is given to illustrate the theoretical result.

APPROXIMATE CONTROLLABILITY OF SECOND-ORDER NONLOCAL IMPULSIVE FUNCTIONAL INTEGRO-DIFFERENTIAL SYSTEMS IN BANACH SPACES

  • Baleanu, Dumitru;Arjunan, Mani Mallika;Nagaraj, Mahalingam;Suganya, Selvaraj
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1065-1092
    • /
    • 2018
  • This manuscript is involved with a category of second-order impulsive functional integro-differential equations with nonlocal conditions in Banach spaces. Sufficient conditions for existence and approximate controllability of mild solutions are acquired by making use of the theory of cosine family, Banach contraction principle and Leray-Schauder nonlinear alternative fixed point theorem. An illustration is additionally furnished to prove the attained principles.

EXISTENCE FOR A NONLINEAR IMPULSIVE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS IN BANACH SPACES

  • Yan, Zuomao
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.681-696
    • /
    • 2011
  • In this paper, we consider the existence of mild solutions for a certain class of nonlinear impulsive functional evolution integrodifferential equation with nonlocal conditions in Banach spaces. A sufficient condition is established by using Schaefer's fixed point theorem combined with an evolution system. An example is also given to illustrate our result.