• Title/Summary/Keyword: Impulsive differential equation

Search Result 43, Processing Time 0.022 seconds

UNIQUENESS OF SOLUTION FOR IMPULSIVE FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

  • Singhal, Sandeep;Uduman, Pattani Samsudeen Sehik
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.171-177
    • /
    • 2018
  • In this research paper considering a differential equation with impulsive effect and dependent delay and applied Banach fixed point theorem using the impulsive condition to the impulsive fractional functional differential equation of an order ${\alpha}{\in}(1,2)$ to get an uniqueness solution. At last, theorem is verified by using a numerical example to illustrate the uniqueness solution.

A NOTE ON EXPLICIT SOLUTIONS OF CERTAIN IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.159-164
    • /
    • 2017
  • This paper deals with linear impulsive differential equations involving the Caputo fractional derivative. We provide exact solutions of nonhomogeneous linear impulsive fractional differential equations with constant coefficients by means of the Mittag-Leffler functions.

OSCILATION AND STABILITY OF NONLINEAR NEUTRAL IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

  • Duan, Yongrui;Tian, Peng;Zhang, Shunian
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.243-253
    • /
    • 2003
  • In this paper, oscillation and stability of nonlinear neutral impulsive delay differential equation are studied. The main result of this paper is that oscillation and stability of nonlinear impulsive neutral delay differential equations are equivalent to oscillation and stability of corresponding nonimpulsive neutral delay differential equations. At last, two examples are given to illustrate the importance of this study.

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

A SYSTEM OF FIRST-ORDER IMPULSIVE FUZZY DIFFERENTIAL EQUATIONS

  • Lan, Heng-You
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.111-123
    • /
    • 2008
  • In this paper, we introduce a new system of first-order impulsive fuzzy differential equations. By using Banach fixed point theorem, we obtain some new existence and uniqueness theorems of solutions for this system of first-order impulsive fuzzy differential equations in the metric space of normal fuzzy convex sets with distance given by maximum of the Hausdorff distance between level sets.

  • PDF

ON EXACT SOLUTIONS FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH NON-INTEGER ORDERS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.515-521
    • /
    • 2016
  • This paper deals with linear impulsive differential equations with non-integer orders. We provide the explicit representation of solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions.

EXISTENCE AND CONTROLLABILITY OF IMPULSIVE FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION WITH STATE DEPENDENT INFINITE DELAY VIA SECTORIAL OPERATOR

  • MALAR, K.;ILAVARASI, R.;CHALISHAJAR, D.N.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.151-184
    • /
    • 2022
  • In the article, we handle with the existence and controllability results for fractional impulsive neutral functional integro-differential equation in Banach spaces. We have used advanced phase space definition for infinite delay. State dependent infinite delay is the main motivation using advanced version of phase space. The results are acquired using Schaefer's fixed point theorem. Examples are given to illustrate the theory.