DOI QR코드

DOI QR Code

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu (Department of Mathematics Chungnam National University) ;
  • Koo, Namjip (Department of Mathematics Chungnam National University)
  • Received : 2015.08.22
  • Accepted : 2015.09.09
  • Published : 2015.11.15

Abstract

This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

Keywords

References

  1. S. K. Choi, B. Kang, and N. Koo, Stability for Caputo fractional differential equations, Proc. Jangjeon Math. Soc. 16 (2013), 165-174.
  2. S. K. Choi, B. Kang, and N. Koo, Stability of Caputo fractional differential systems, Abstr. Appl. Anal. 2014 (2014), Article ID 631419, 6 pages.
  3. S. K. Choi, N. Koo, and C. Ryu, Impulsive integral inequalities with a non-separable kernel, J. Chungcheong Math. Soc. 27 (2014), 651-659. https://doi.org/10.14403/jcms.2014.27.4.651
  4. Z. Denton and A. S. Vatsala, Fractional integral inequalities and applications, Comput. Math. Appl. 59 (2010), 1087-1094. https://doi.org/10.1016/j.camwa.2009.05.012
  5. M. Feckan, Y. Zhou, and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commmun Nonlinear Sci Numer Simulat. 17 (2012), 3050-3060. https://doi.org/10.1016/j.cnsns.2011.11.017
  6. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  7. V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co. Pte. Ltd., NJ, 1989.
  8. V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers Ltd, 2009.
  9. G. M. Mittag-Leffler, Sur l'integrable de Laplace-Abel, C. R. Acad. Sci. Paris (Ser. II) 136 (1903), 937-939.
  10. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  11. J. Wang, Y. Zhou, and M. Feckan, Nonlinear impulsive problems for fractional di erential equations and Ulam stability, Comput. Math. Appl. 64 (2012), 3389-3405. https://doi.org/10.1016/j.camwa.2012.02.021
  12. H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equations J. Math. Anal. Appl. 328 (2007), 1075-1081. https://doi.org/10.1016/j.jmaa.2006.05.061

Cited by

  1. ON EXACT SOLUTIONS FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH NON-INTEGER ORDERS vol.29, pp.3, 2016, https://doi.org/10.14403/jcms.2016.29.3.515
  2. A NOTE ON EXPLICIT SOLUTIONS OF CERTAIN IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS vol.30, pp.1, 2017, https://doi.org/10.14403/jcms.2017.30.1.159
  3. STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER vol.56, pp.1, 2015, https://doi.org/10.4134/jkms.j180106
  4. Fractional impulsive differential equations: Exact solutions, integral equations and short memory case vol.22, pp.1, 2015, https://doi.org/10.1515/fca-2019-0012