DOI QR코드

DOI QR Code

h-STABILITY FOR LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

  • Cui, Yinhua (Department of Applied Mathematics Paichai University) ;
  • Ryu, Chunmi (Department of Mathematics Chungnam National University)
  • Received : 2011.10.25
  • Accepted : 2011.11.18
  • Published : 2011.12.30

Abstract

We study the h-stability for linear impulsive differential equations and their perturbations by using the impulsive integral inequalities.

Keywords

References

  1. D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications, Ellis Horwood and John Wiley, New York, 1989.
  2. D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Propertites of the Solutions, World Scientific Publishing Co., River Edge, NJ, 1995.
  3. D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical, 1993.
  4. S. D. Borisenko, On the asymptotic stability of the solutions of systems with impulse effect, Ukr. Math. J. 35 (1986), no. 2, 144-150.
  5. F. Brauer and J. S. W. Wong, On asymptotic behavior of perturbed linear systems , J. Diff. Equations, 6 (1969), 152-163.
  6. S. K. Choi, N. J. Koo and C. M. Ryu, h-stability for linear impulsive differential equations via similarity, J. Chungcheng Math. Soc. 24 (2011), no. 2, 393-400.
  7. V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co., Inc., 1989.
  8. R. Medina and M. Pinto, Uniform asymptotic stability of solutions of impulsive differential equations, Dyamic Systems and Applications 5 (1996), 97-108.
  9. M. Pinto, Stability of nonlinear differenial systems, Applicable analysis. 43 (1984), 161-175.
  10. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis. 4 (1992), 1-20.
  11. A. M. Samoilenko and N. A. Perestyuk, Differential Equations, World Scientific Publishing Co., Inc., 1995.