본 연구에서는 동반논문(오세붕 & 이승래, 1996)에서 정식화한 비등방경화 구성모델에 대한 내재적인 응력적분 알고리즘의 정확성과 효율성을 검증하였다. 비배수 삼축압축시험경로에 대한 오차평가를 통하여 정확도해석을 수행하였고 수치적인 굴착해석예제를 수행함으로써 정확도 및 수렴도를 분석하였다. 그 결과 제안된 알고리즘이 비등방경화 구성관계에 대하여 음력을 정화하게 적분하고 Newton 법을 이용한 비선형 해석시에 점근적인 2차 수렴도를 확보함을 알 수 있었다. 그리고 이러한 검증을 토대로 지반의 초기조건 및 시공단계를 고려한 유한요소법을 이용하여 실제 굴착문제를 해석하였다. 비등방경화 구성관계를 이용함으로써, 추정된 벽체의 변위는 Cainflay모델에 비하여 실제와 더 유사한 해석결과를 얻을 수 있었다.
A new conception of fundamental tasks in dynamics of the bridge-track-train systems (BTT), with the aim to evaluate moving load's models adequacy, has been developed. The 2D physical models of BTT systems, corresponding to the fundamental tasks, have been worked out taking into account one-way constraints between the moving unsprung masses and the track. A method for deriving the implicit equations of motion, governing vibrations of BTT systems' models, as well as algorithms for numerical integration of these equations, leading to the solutions of high accuracy and relatively short times of simulations, have been also developed. The derived equations and formulated algorithms constitute the basis for numerical simulation of vibrations of the considered systems.
A new and efficient implicit scheme is proposed to obtain a steady-state solution in time integration and the comparison of characteristics with the approximation ways for the implicit method to solve the incompressible Navier-Stokes equations is provided. The conservative, finite-volume cell-vertex upwind scheme and artificial compressibility method using dual time stepping for time accuracy is applied in this paper. The numerical results obtained indicate that the direct application of Jacobian matrix to the Lower and upper sweeps of implicit LU-SGS leads to better performance as well as convergence regardless of CFL number and true time step than explicit scheme and approximation of Jacobian matrix. The flow simulation around box in uniform flow with unstructured meshes is demonstrated to check the validity of the current formulation.
The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.
Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.
The Fokker-Planck (FP) model is one of the commonly used methods for studies of the dynamical evolution of dense spherical stellar systems such as globular clusters and galactic nuclei. The FP model is numerically stable in most cases, but we find that it encounters numerical difficulties rather often when the effects of tidal shocks are included in two-dimensional (energy and angular momentum space) version of the FP model or when the initial condition is extreme (e.g., a very large cluster mass and a small cluster radius). To avoid such a problem, we have developed a new integration scheme for a two-dimensional FP equation by adopting an Alternating Direction Implicit (ADI) method given in the Douglas-Rachford split form. We find that our ADI method reduces the computing time by a factor of ${\sim}2$ compared to the fully implicit method, and resolves problems of numerical instability.
This paper presents a new difference scheme for numerical solution of stiff system of ODE’s. The present study is mainly motivated to develop an absolutely stable numerical method with a high order of approximation. In this work a double implicit A-stable difference scheme with the sixth order of approximation is suggested. Another purpose of this study is to introduce automatic choice of the integration step size of the difference scheme which is derived from the proposed scheme and the one step scheme of the fourth order of approximation. The algorithm was tested by means of solving the Kreiss problem and a chemical kinetics problem. The behavior of the gas explosive mixture (H₂+ O₂) in a closed space with a mobile piston is considered in test problem 2. It is our conclusion that a hydrogen-operated engine will permit to decrease the emitted levels of hazardous atmospheric pollutants.
KIM, JEONGHO;JUNG, JINWOOK;PARK, YESOM;MIN, CHOHONG;LEE, BYUNGJOON
Journal of the Korean Society for Industrial and Applied Mathematics
/
제23권2호
/
pp.93-114
/
2019
In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion. We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences. The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first-order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.
While implicit integration methods such as Newton's method have excellent stability for the analysis of stiff and constrained mechanical systems, they have the drawback that the evaluation and LU-factorization of the system Jacobian matrix required at every time step are time-consuming. This paper proposes a Jacobian update-free Newton's method in order to overcome these defects. Because the motions of all bodies in a vehicle model are limited with respect to the chassis body, the equations are formulated with respect to the moving chassis-body reference frame instead of the fixed inertial reference frame. This makes the system Jacobian remain nearly constant, and thus allows the Newton's method to be free from the Jacobian update. Consequently, the proposed method significantly decreases the computational cost of the vehicle dynamic simulation. This paper provides detailed generalized formulation procedures for the equations of motion, constraint equations, and generalized forces of the proposed method.
The delta-formulation of the Navier-Stokes equations has been popularly used in the aerodynamics area. Implicit algorithm can be easily implemented in that by using Taylor series expansion. This formulation is extended for an unsteady analysis by using a dual-time integration. In the meanwhile, the incompressible flows with heat transfers which occur in the area of thermo-hydraulics have been solved by a segregated algorithm such as the SIMPLE method, where each equation is discretised by using an under-relaxed deferred correction method and solved sequentially. In this study, the dual-time delta formulation is implemented in the segregated Navier-Stokes solver which is based on the collocated cell-centerd scheme with un unstructured mesh FVM. The pressure correction equation is derived by the SIMPLE method. From this study, it was found that the Euler dual-time method in the delta formulation can be combined with the SIMPLE method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.