• Title/Summary/Keyword: Imaging Method

Search Result 3,060, Processing Time 0.031 seconds

Accelerated Generation Algorithm for an Elemental Image Array Using Depth Information in Computational Integral Imaging

  • Piao, Yongri;Kwon, Young-Man;Zhang, Miao;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.132-138
    • /
    • 2013
  • In this paper, an accelerated generation algorithm to effectively generate an elemental image array in computational integral imaging system is proposed. In the proposed method, the depth information of 3D object is extracted from the images picked up by a stereo camera or depth camera. Then, the elemental image array can be generated by using the proposed accelerated generation algorithm with the depth information of 3D object. The resultant 3D image generated by the proposed accelerated generation algorithm was compared with that the conventional direct algorithm for verifying the efficiency of the proposed method. From the experimental results, the accuracy of elemental image generated by the proposed method could be confirmed.

Three Dimensional Volume Reconstruction of Polyhedral Objects Using X-ray Stereo Images

  • Roh, Young-Jun;Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.2-28
    • /
    • 2001
  • Three dimensional shape measurement techniques are widely needed in industries for product quality monitoring and control. X-ray imaging method is a promising technology to achieve three-dimensional Information, both the surface and inner structure of an object, since it can overcome the limitations of conventional visual or optical methods such as an occlusion problem or surface reflection properties. In this paper, we propose three dimensional volume reconstruction method based on x-ray stereo imaging technology. Here, the stereo images of an object from two different views are taken by changing the object pose rather than moving imaging plane as in conventional stereo vision method. We propose a series of image processing techniques to extract the features efficiently from x-ray images, where the occluded features in case of normal camera vision could be found ...

  • PDF

APPLICATION OF THE BIFOCUSING METHOD IN MICROWAVE IMAGING WITHOUT BACKGROUND INFORMATION

  • SEONG-HO SON;WON-KWANG PARK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.109-122
    • /
    • 2023
  • In this study, we consider the application of the bifocusing method (BFM) for identifying the locations and shapes of small anomalies from scattering parameter data when the exact values of background permittivity and conductivity are unknown. To this end, an imaging function using numerical focusing operator is introduced and its mathematical structure is revealed by establishing a relationship with an infinite series of Bessel functions, antenna arrangements, and anomaly properties. On the basis of the revealed structure, we demonstrate why inaccurate location and size of anomalies were retrieved via the BFM. Some simulation results are illustrated using synthetic data polluted by random noise to support the theoretical result.

Understanding Protocols in Magnetic Resonance Spectroscopy: Focusing on Literature Studies (자기공명분광 검사 시 프로토콜 이해: 문헌연구 중심으로)

  • MinKyu Back;YoungHwan Ryu;EunHoe Goo
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.405-409
    • /
    • 2023
  • The magnetic resonance imaging method is a technology that can diagnose patients using local magnetic field through local magnetic field through local magnetic field through local magnetic field and STEAM method using local magnetic field Currently, many diseases can diagnose many diseases using self-resonance methods. The purpose of this study is to provide optimal information about using magnetic resonance imaging method according to patients.In many studies, self-resonance imaging showed that self-resonance methods can effectively inspect brain cancer and liver diseases. mong them, this study, brain tumor tests, cervical cancer tests based on literature, there were effective parts of these four diseases, but it was clearly found that they should not use in clinical trials, but it is clearly found to improve and improve and improve. Therefore, it is believed that it will be based on the future studies.

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.

An Efficient Motion Estimation and Compensation Method for Ultrasound Synthetic Aperture Imaging (초음파 합성구경 영상을 위한 효율적인 움직임 추정 및 보상 기법)

  • 김강식;황재섭;정종섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.87-99
    • /
    • 2002
  • This paper describes a method for overcoming the motion artifacts inherent in synthetic aperture(SA) imaging. based on the investigation results as to the influence of a target motion on synthetic aperture techniques. This method uses a region-based motion compensation approach in which only the axial motion is estimated and compensated for a given region of interest(ROI) under the assumption that the whole ROI moves uniformly The estimated axial motion is calculated with a crosscorrelation(CC) method at the Point where the focused signal has the maximum energy within the ROI. We also presents a method for estimating the axial motion using the autocorrelation(AC) method that is widely used to estimate average Doppler frequency Both computer simulations and in vivo experiments show that the proposed methods can improve greatly the spatial resolution and SNR of ultrasound imaging by implementing the SA techniques for two-way dynamic focusing without motion artifacts. In addition the AC-barred motion compensation method provides almost the same results as the CC-based one, but with a dramatically reduced computational complexity.

Backward Testing Method of MTF measurement for optical engine of CRT of rear projection HDTV (후면투사식 CRT 고화질 텔레비전용 광학엔진의 변조전달함수 측정을 위한 후방검사 변조전달함수 측정법)

  • Song, Jong-Sup;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Yun-Woo;Song, Jae-Bong;Lee, Hoe-Yun;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Because of the wide plane and the curved field of CRT rear projection high definition television, its MTF(modulation transfer function) can't be easily measured by the usual forward testing method. Then we propose a backward testing method for the MTF so that the object plane and the image analyzer of forward testing are located at positions opposite each other. We prefer to use the backward testing method because the forward testing method has poor accuracy caused by very small numerical aperture, low spatial resolutions, and long depth of focus. We found that the backward testing method was very easy to align and had high repeatability. We confirmed the confidence of results obtained by the backward testing method in comparison with designed results.

Accurate Interpretation of Electron Diffraction Data Acquired by Imaging Plates (Imaging Plate에 기록된 전자회절자료의 해석)

  • Kim, Young-Min;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.195-204
    • /
    • 2003
  • The Experimental calibration method has been investigated to correct d-spacing estimation and to identify phases in the electron diffraction data acquired by imaging plates. When the diffraction data from the imaging plate was corrected by the d-spacing calibration method with the radial intensity distribution plotting in this experiment, The accuracy of d-spacing estimation was significantly increased in errors of about 0.5%. The experimental calibration equation followed up the first order exponential decay function was derived from the trace of d-spacing deviation between the measured and the calculated values. It was applied to the analysis of d-spacing and the phase identification of the transitional phases formed from [001] gibbsite specimen by electron beam irradiation effect. In this case more accurate phase identification and d-spacing evaluation is possible for the transitional phases whose diffraction patterns are complicatedly superimposed. It is concluded that ${\chi}$-alumina, ${\gamma}$-alumina and ${\sigma}$-alumina are clearly identified as the major transitional phases formed from gibbsite by electron beam irradiation for 120 min.

Three-dimensional QR Code Using Integral Imaging (집적 영상을 활용한 3차원 QR code)

  • Kim, Youngjun;Cho, Ki-Ok;Han, Jaeseung;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2363-2369
    • /
    • 2016
  • In this paper, we propose three-dimensional (3D) quick-response (QR) code generation technique using passive 3D integral imaging and computational integral imaging reconstruction technique. In our proposed method, we divide 2D QR code into 4 planes with different reconstruction depths and then we generate 3D QR code using synthetic aperture integral imaging and computational reconstruction. In this 3D QR code generation process, we use integral imaging which is one of 3D imaging technologies. Finally, 3D QR code can be scanned by reconstructing and merging 3D QR codes at 4 different planes with computational reconstruction. Therefore, the security level for QR code scanning may be enhanced when QR code is scanned. To show that our proposed method can improve the security level for QR code scanning, in this paper, we carry out the optical experiments and computational reconstruction. In addition, we show that 3D QR code can be scanned when reconstruction depths are known.