Acknowledgement
This research was supported by the Soonchunhyang University Research Fund and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C1A01005221).
References
- K. Ito, B. Jin, and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), Article No. 025003.
- S. Kang, M. Lambert, and W.-K. Park, Direct sampling method for imaging small dielectric inhomogeneities: analysis and improvement, Inverse Problems, 34 (2018), Article No. 095005.
- S.-H. Son, K.-J. Lee, and W.-K. Park, Application and analysis of direct sampling method in real-world microwave imaging, Applied Mathematics Letters, 96 (2019), 47-53. https://doi.org/10.1016/j.aml.2019.04.016
- S. Cosgun, E. Bilgin, and M. Cayoren, Microwave imaging of breast cancer with factorization method: SPI-ONs as contrast agent, Medical Physics, 47 (2020), 3113-3122. https://doi.org/10.1002/mp.14156
- J. Guo, G. Yan, J. Jin, and J. Hu, The factorization method for cracks in inhomogeneous media, Applications of Mathematics, 62 (2017), 509-533. https://doi.org/10.21136/AM.2017.0194-16
- K. H. Leem, J. Liu, and G. Pelekanos, An extended direct factorization method for inverse scattering with limited aperture data, Inverse Problems in Science and Engineering, 28 (2020), 754-776. https://doi.org/10.1080/17415977.2019.1647195
- H. Ammari, J. Garnier, H. Kang, W.-K. Park, and K. Solna, Imaging schemes for perfectly conducting cracks, SIAM Journal on Applied Mathematics, 71 (2011), 68-91. https://doi.org/10.1137/100800130
- H. Ammari, J. Garnier, H. Kang, M. Lim, and K. Solna, Multistatic imaging of extended targets, SIAM Journal on Imaging Sciences, 5 (2012), 564-600. https://doi.org/10.1137/10080631X
- W.-K. Park, Real-time microwave imaging of unknown anomalies via scattering matrix, Mechanical Systems and Signal Processing, 118 (2019), 658-674. https://doi.org/10.1016/j.ymssp.2018.09.012
- H. F Alqadah, A compressive multi-frequency linear sampling method for underwater acoustic imaging, IEEE Transactions on Image Processing, 25 (2016), 2444-2455. https://doi.org/10.1109/TIP.2016.2548243
- L. Audibert and H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM Journal on Imaging Sciences, 10 (2017), 845-870. https://doi.org/10.1137/16M110112X
- M. G. Aram, M. Haghparast, M. S. Abrishamian, and A. Mirtaheri, Comparison of imaging quality between linear sampling method and time reversal in microwave imaging problems, Inverse Problems in Science and Engineering, 24 (2016), 1347-1363. https://doi.org/10.1080/17415977.2015.1104308
- Q. Bao, S. Yuan, and F. Guo, A new synthesis aperture-MUSIC algorithm for damage diagnosis on complex aircraft structures, Mechanical Systems and Signal Processing, 136 (2010), Article No. 106491.
- W.-K. Park, Asymptotic properties of MUSIC-type imaging in two-dimensional inverse scattering from thin electromagnetic inclusions, SIAM Journal on Applied Mathematics, 75 (2015), 209-228. https://doi.org/10.1137/140975176
- W.-K. Park, Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix, Mechanical Systems and Signal Processing, 153 (2021), Article No. 107501.
- M. N. Akinci, M. Cayoren, and I. Akduman, Near-field orthogonality sampling method for microwave imaging: theory and experimental verification, IEEE Transactions on Microwave Theory and Techniques, 64 (2016), 2489-2501. https://doi.org/10.1109/TMTT.2016.2585488
- M. T. Bevacqua, T. Isernia, R. Palmeri, M. N. Akinci, and L. Crocco, Physical insight unveils new imaging capabilities of orthogonality sampling method, IEEE Transactions on Antennas and Propagation, 68 (2020), 4014-4021. https://doi.org/10.1109/TAP.2019.2963229
- W.-K. Park, On the application of orthogonality sampling method for object detection in microwave imaging, IEEE Transactions on Antennas and Propagation, 71 (2023), 934-946.
- M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems, Engineering Analysis with Boundary Elements, 35 (2011), 223-235. https://doi.org/10.1016/j.enganabound.2010.08.007
- F. Le Louer and M.-L. Rapun, Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I: one step method, SIAM Journal on Imaging Sciences, 10 (2017), 1291-1321. https://doi.org/10.1137/17M1113850
- W.-K. Park, Performance analysis of multi-frequency topological derivative for reconstructing perfectly conducting cracks, Journal of Computational Physics, 335 (2017), 865-884. https://doi.org/10.1016/j.jcp.2017.02.007
- H. Ammari, J. Garnier, W. Jing, H. Kang, M. Lim, K. Solna, and H. Wang, Mathematical and statistical methods for multistatic imaging,Lecture Notes in Mathematics 2098, Springer, Cham, 2013.
- H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics 1846, Springer-Verlag, Berlin, 2004.
- N. Bleistein, J. Cohen, and J. S. Stockwell Jr, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, Interdisciplinary Applied Mathematics 13, Springer, New York, 2001.
- V. S. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems, CRC Press, Routledge, 1998.
- F. Cakoni, D. Colton, and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,CBMS-NSF Regional Conference Series in Applied Mathematics 80, Society for Industrial and Applied Mathematics, 2011.
- A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, 2008.
- A. A. Novotny and J. Sokolowski, Topological derivatives in shape optimization, Interaction of Mechanics and Mathematics Series, Springer-Verlag, Berlin, Heidelberg, 2013.
- L. Jofre, A. Broquetas, J. Romeu, S. Blanch, A. P. Toda, X. Fabregas, and A. Cardama, UWB tomographic radar imaging of penetrable and impenetrable objects, Proceedings of the IEEE, 97 (2009), 451-464. https://doi.org/10.1109/JPROC.2008.2008854
- Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, Microwave reflection tomographic array for damage detection of civil structures, IEEE Transactions on Antennas and Propagation, 51 (2003), 3022-3032. https://doi.org/10.1109/TAP.2003.818786
- S. Kang, W.-K. Park, and S.-H. Son, A qualitative analysis of the bifocusing method for a real-time anomaly detection in microwave imaging, Computers and Mathematics with Applications, 137 (2023), 93-101.
- M. Slaney, A. C. Kak, and L. E. Larsen, Limitations of imaging with first-order diffraction tomography, IEEE Transactions on Microwave Theory and Techniques, 32 (1984), 860-874. https://doi.org/10.1109/TMTT.1984.1132783
- W.-K. Park, H. P. Kim, K.-J. Lee, and S.-H. Son, MUSIC algorithm for location searching of dielectric anomalies from S-parameters using microwave imaging, Journal of Computational Physics, 348 (2017), 259-270. https://doi.org/10.1016/j.jcp.2017.07.035
- M. Haynes, J. Stang, and M. Moghaddam, Real-time microwave imaging of differential temperature for thermal therapy monitoring, IEEE Transactions on Biomedical Engineering, 61 (2014), 1787-1797. https://doi.org/10.1109/TBME.2014.2307072
- J.-Y. Kim, K.-J. Lee, B.-R. Kim, S.-I. Jeon, and S.-H. Son, Numerical and experimental assessments of focused microwave thermotherapy system at 925 MHz, ETRI Journal, 41 (2019), 850-862. https://doi.org/10.4218/etrij.2018-0088
- S.-H. Son, N. Simonov, H.-J. Kim, J.-M. Lee, and S.-I. Jeon, Preclinical prototype development of a microwave tomography system for breast cancer detection, ETRI Journal, 32 (2010), 901-910. https://doi.org/10.4218/etrij.10.0109.0626
- D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Problems, Mathematics and Applications Series 93, Springer, New York, 1998.