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ABSTRACT. In this study, we consider the application of the bifocusing method (BFM) for
identifying the locations and shapes of small anomalies from scattering parameter data when
the exact values of background permittivity and conductivity are unknown. To this end, an
imaging function using numerical focusing operator is introduced and its mathematical struc-
ture is revealed by establishing a relationship with an infinite series of Bessel functions, antenna
arrangements, and anomaly properties. On the basis of the revealed structure, we demonstrate
why inaccurate location and size of anomalies were retrieved via the BFM. Some simulation
results are illustrated using synthetic data polluted by random noise to support the theoretical
result.

1. INTRODUCTION

Retrieving the location, outline shape, and material properties (or parameter distribution) of
unknown targets is an interesting and important research subject for addressing inverse scatter-
ing problems and microwave imaging inadequacies. To this end, various qualitative methods
using multistatic measurement systems have been investigated. For example, direct sampling
method [1, 2, 3], factorization method [4, 5, 6], Kirchhoff and subspace migration techniques
[7, 8, 9], linear sampling method [10, 11, 12], MUltiple SIgnal Classification (MUSIC) al-
gorithm [13, 14, 15], orthogonality sampling method [16, 17, 18], and topological derivative
[19, 20, 21]. We also refer to [22, 23, 24, 25, 26, 27, 28] for related research.

The recently developed bifocusing method (BFM) is also classified as a qualitative method
using a multistatic measurement system. Based on applications for ultra-wide-band tomo-
graphic radar imaging [29], damage detection in concrete voids [30], and anomaly detection
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in microwave imaging [31], the BFM can be considered an effective microwave imaging tech-
nique. To perform the BFM to retrieve unknown targets, the incident field at each search point
must be evaluated with the exact value of the background wavenumber, which is dependent
to applied frequency, background permittivity, permeability, and conductivity; therefore, exact
information regarding the background medium must be known. For this reason, most research
has assumed that complete information is known regarding the background and used the statis-
tical values.

Notably, if inaccurate values for background permittivity or conductivity are applied, the
BFM is inappropriate for reconstructing unknown targets, as inaccurate locations and target
sizes are identified. Fortunately, it is possible to recognize the targets when the value of ap-
plied background conductivity is small; however this approach has been heuristically examined
using numerical simulations. To the best of our knowledge, mathematical theory for explaining
this phenomenon has not been established yet. This motivates our investigation to develop a
mathematical theory for applying the BFM.

In this study, we establish a reliable mathematical theory of the BFM from scattering param-
eter data without complete background medium information. To do so, we apply an alternative
wavenumber rather than the true and demonstrate that the imaging function of the BFM can
be expressed using the infinite series of Bessel functions of integer order, material properties,
antenna arrangement, and true and applied wavenumbers. This is based on the integral rep-
resentation formula for the scattered-field S−parameter in the presence of small anomalies.
The results reveal the reason that inaccurate locations and target shapes are retrieved. Simula-
tion is conducted using synthetic data generated by the CST STUDIO SUITE to validate the
theoretical results.

This paper is organized as follows. In Section 2, we briefly introduce the concept of the
scattered-field S−parameter in the presence of small anomalies and the imaging function of
the BFM. In Section 3, we develop the mathematical structure of the designed imaging func-
tion by establishing a relationship with an infinite series of Bessel functions of integer order,
antenna arrangement, material properties, and unknown background information. Based on
this structure, we explain the reason that inaccurate locations and shapes are retrieved. In Sec-
tion 4, simulation results using synthetic data that are polluted by random noise are presented
to support our theoretical results. A brief conclusion including future research directions is
provided in Section 5.

2. SCATTERING PARAMETER AND BIFOCUSING METHOD

2.1. Problem Setting. Suppose that there exists a set of anomalies (Σs, s = 1, 2, · · · , S)
that have εs and σs as the value of dielectric permittivity and electric conductivity at given
angular frequency ω = 2πf , respectively. For the sake of experimentation, we assume that
every Σs is a small ball with radii αs, and denote Σ be the collection of Σs. Throughout
this study, we set every Σs to be completely embedded in a homogeneous region Ω and there
no magnetic material is present in Ω; thus, the value of magnetic permeability is constant
µ(r) ≡ µb = 4π×10−7H/m for every r ∈ Ω. We set Ω to be filled by a matching liquid, which
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has εb and σb as the value of permittivity and conductivity at ω such that ωεb ≫ σb. Using
this notation, we introduce the piecewise constant permittivity and conductivity as follows:

ε(r) =

{
εs for r ∈ Σs

εb for r ∈ Ω\Σ and σ(r) =

{
σs for r ∈ Σs

σb for r ∈ Ω\Σ.

We denote k = ω
√

µb(εb + iσb/ω) as the background wavenumber and An, n = 1, 2, · · · , N
as the dipole antenna with location an for transmitting and receiving signals. With this setting,
we assume that all anomalies Σs are separated from each other such that:

|r′ − r′′| ≫ 1

4|k|
for r′ ∈ Σs′ , r′′ ∈ Σs′′ , s′ ̸= s′′, s′, s′′ = 1, 2, · · · , S. (2.1)

We also assume that an and r′ ∈ Σ satisfy the relation (2.1), and to guarantee the smallness of
Σs, the following relation holds (e.g., see [32]):√

εs
εb

− 1 <
λ

4αs
, s = 1, 2, · · · , S, (2.2)

where λ denotes the positive wavelength. We illustrate the problem setting in Fig. 1.

region of interest (Ω)

dipole antennas

Σ1

Σ2 Σ3

FIGURE 1. Illustration of problem setting.

2.2. Scattering Parameter. Let Einc(am, r) be the incident field due to the point current
density J at Am. Then, based on Maxwell’s equation, Einc(am, r) satisfies the following:

∇×Einc(am, r) = −iωµbHinc(am, r), ∇×Hinc(am, r) = (σb + iωεb)Einc(am, r).

We denote Etot(r,am) as the corresponding total field in the presence of Σ measured by the
receiver Am, which satisfies the following:

∇×Etot(r,am) = −iωµbHtot(r,am), ∇×Htot(r,am) = (σ(r) + iωε(r))Etot(r,am)

with transmission condition on ∂Σ. Here, Hinc and Htot denote the magnetic fields.
The S−parameter (or scattering parameter) is defined as the ratio of the output voltages

(or reflected waves) at the An to the input voltages (or incident waves) at Am, referencing
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[33]. We denote Sinc(n,m) and Stot(n,m) as the incident and total field S−parameter with
and without anomalies. Throughout this study, the measurement data Sscat(n,m) denotes the
scattered field S−parameter obtained by subtracting Stot(n,m) and Sinc(n,m). Referencing
[34], Sscat(n,m) can be represented by the following integral equation:

Sscat(n,m) =
ik2

4ωµb

∫
Ω

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)
Einc(am, r′) ·Etot(r

′,an)dr
′.

In this study, the height of microwave machine is considered to be long enough (see [35]
for an example of the experimental setup). Therefore, based on the mathematical treatment
of the scattering of time-harmonic electromagnetic waves from thin infinitely long cylindrical
obstacles, only the z−component of the incident and total fields can be measured, and by
denoting E

(z)
inc and E

(z)
tot as the z−component of the incident and total fields, respectively, the

expression Sscat(n,m) becomes the following:

Sscat(n,m) =
ik2

4ωµb

∫
Σ

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)
E
(z)
inc(am, r′)E

(z)
tot(r

′,an)dr
′. (2.3)

2.3. Bifocusing Method: Traditional Approach. We next introduce the imaging function of
the BFM to retrieve Σs from the scattering matrix M in which the elements are measurement
data Sscat(n,m), which are determined as follows:

M =


Sscat(1, 1) Sscat(1, 2) · · · Sscat(1, N − 1) Sscat(1, N)

Sscat(2, 1) Sscat(2, 2) · · · Sscat(2, N − 1) Sscat(2, N)
...

...
. . .

...
...

Sscat(N, 1) Sscat(N, 2) · · · Sscat(N,N − 1) Sscat(N,N)


Unfortunately, since the complete expression of the total field E

(z)
tot(r,an) is still unknown,

an alternative expression of Sscat(n,m) is required. Since (2.2) holds, by applying the Born
approximation to (2.3), we have

Sscat(n,m) ≈ ik2

4ωµb

∫
Σ

(
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

)
E
(z)
inc(am, r′)E

(z)
inc(r

′,an)dr
′. (2.4)

Correspondingly, M can be represented as follows:

M ≈ ik2

4ωµb



∫
Σ
O(r′)E

(z)
inc(a1, r

′)E
(z)
inc(a1, r

′)dr′ · · ·
∫
Σ
O(r′)E

(z)
inc(a1, r

′)E
(z)
inc(aN , r′)dr′∫

Σ
O(r′)E

(z)
inc(a2, r

′)E
(z)
inc(a1, r

′)dr′ · · ·
∫
Σ
O(r′)E

(z)
inc(a2, r

′)E
(z)
inc(aN , r′)dr′

...
. . .

...∫
Σ
O(r′)E

(z)
inc(aN , r′)E

(z)
inc(aN , r′)dr′ · · ·

∫
Σ
O(r′)E

(z)
inc(aN , r′)E

(z)
inc(aN , r′)dr′


,

(2.5)
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where

O(r′) =
ε(r′)− εb

εb
+ i

σ(r′)− σb
ωεb

.

On the basis of (2.5), we next design the imaging function by synthesizing two focused
groups of antennas. To this end, we define the following vector: for each r ∈ Ω,

W(r) =

(
1

E
(z)
inc(a1, r)

,
1

E
(z)
inc(a2, r)

, · · · , 1

E
(z)
inc(aN , r)

)
(2.6)

and introduce the corresponding traditional imaging function as follows:

FBFT(r) = |W(r)MW(r)T | =

∣∣∣∣∣
N∑

n=1

M∑
m=1

Sscat(n,m)

E
(z)
inc(am, r)E

(z)
inc(an, r)

∣∣∣∣∣ .
A map of fBFT(r) is expected to include peaks of large magnitude at r ∈ Σ.

2.4. Bifocusing Method Without Background Information. It is essential to emphasize that
unlike to traditional research, it is difficult to handle the diagonal elements of M because each
N antenna is used to transmit signals and the remaining antennas are used to receive signals,
referencing [36] as an example of this setup. Moreover, it is generally difficult to discern the
weak scattered signal from the relatively high antenna reflection if the locations of antennas
to transmit and receive signals are same, referencing [9]. Subsequently, we set unknown mea-
surement data Sscat(n, n) to zero for all n and use the following scattering matrix:

D =



0 Sscat(1, 2) · · · Sscat(1, N − 1) Sscat(1, N)

Sscat(2, 1) 0 · · · Sscat(2, N − 1) Sscat(2, N)
...

...
. . .

...
...

Sscat(N − 1, 1) Sscat(N − 1, 2) · · · 0 Sscat(N − 1, N)

Sscat(N, 1) Sscat(N, 2) · · · Sscat(N,N − 1) 0


.

(2.7)
We next generate the test vector (2.6) to be applied when the background information is

unknown. Since the incident field E
(z)
inc(r, r

′) is modeled by the following two-dimensional
Greens’ function:

E
(z)
inc(r, r

′) =
i

4
H

(2)
0 (k|r− r′|) := G(r, r′, k), r ̸= r′,

the exact value of εb and σb must be known to produce exact incident field data. Here, H(2)
0

denotes the Hankel function of order zero of the second kind. However, since we have no a
priori information regarding εb and σb, it is not possible to generate accurate incident field
data (i.e., we cannot apply (2.6) to design the imaging function). Accordingly, we apply an
alternative wavenumber η and generate the following test vector: for each r ∈ Ω,

G(r, η) =

(
1

G(a1, r, η)
,

1

G(a2, r, η)
, · · · , 1

G(aN , r, η)

)
. (2.8)
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With this, we design the following imaging function for the BFM:

FBFM(r, η) = |G(r, η)DG(r, η)T | =

∣∣∣∣∣
N∑

n=1

M∑
m=1

Sscat(n,m)

G(am, r, η)G(an, r, η)

∣∣∣∣∣ .
3. THEORETICAL RESULT

If the exact wavenumber k is applied, exact locations rs ∈ Σ can be identified referencing
the map of FBFM(r, k); however, based on the simulation results exhibited in Section 4, inac-
curate locations for rs are retrieved when η ̸= k. We next theoretically explain the reason for
this phenomenon. To this end, we derive the following result.

Theorem 3.1. Let θn = an/|an| = an/R = (cos θn, sin θn) and kr′ − ηr = |kr′ −
ηr|(cosϕ′, sinϕ′). If an satisfies |an − r′| ≫ 1/4|k|, 1/4|η| for n = 1, 2, · · · , N , FBFM(r)
can be represented as follows:

FBFM(r, η) =

∣∣∣∣∣ η

4kωµb

∫
Σ
O(r′)

[
N2

(
J0(|kr′ − ηr|) + Λ(k, η)

N

)2

−N

(
J0(2|kr′ − ηr|) + Λ(2k, 2η)

N

)]
dr′
∣∣∣∣ , (3.1)

where Jp denotes Bessel function of order p of the first kind and

Λ(k, η) =

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(|kr′ − ηr|)eip(θn−ϕ′).

Proof. Based on (2.4), (2.7), and (2.8), we can observe the following:

G(r, η)DG(r, η)T =
N∑

n=1

M∑
m=1

Sscat(n,m)

G(am, r, η)G(an, r, η)

=
i

4ωµb

∫
Σ
O(r′)

( N∑
n=1

G(an, r
′, k)

G(an, r, η)

)2

−
N∑

n=1

(
G(an, r

′, k)

G(an, r, η)

)2
dr′ (3.2)

Since |an− r|, |an− r′| ≫ 1/4|k| and 1/4|η| for all n = 1, 2, · · · , N and s = 1, 2, · · · , S, the
following asymptotic forms of the Hankel function holds (e.g., see [37, Theorem 2.5]):

H
(2)
0 (k|an− r′|) ≈ (1 + i)e−ik|an|√

kπ|an|
eikθn·r′ and H

(2)
0 (η|an− r|) ≈ (1 + i)e−iη|an|√

ηπ|an|
eiηθn·r.

Thus, we have

G(an, r
′, k)

G(an, r, η)
=

iH
(2)
0 (k|an − r′|)/4

iH
(2)
0 (η|an − r|)/4

≈
√

η

k
e−i(k−η)|R|eiθn·(kr′−ηr).
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Since θn · (kr′ − ηr) = |kr′ − ηr| cos(θn − ϕ′) and the following Jacobi-Anger expansion
holds uniformly:

eix cos θ = J0(x) +

∞∑
p=−∞,p ̸=0

ipJp(x)e
ipθ,

we can easily obtain

N∑
n=1

G(an, r
′, k)

G(an, r, η)
=

√
η

k
e−i(k−η)|R|

N∑
n=1

eiθn·(kr′−ηr) =

√
η

k

N∑
n=1

ei|kr
′−ηr| cos(θn−ϕ′)

= N

√
η

k
e−2i(k−η)|R|

J0(|kr′ − ηr|) + 1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(|kr′ − ηr|)eip(θn−ϕ′)

 ,

and similarly

N∑
n=1

(
G(an, r

′, k)

G(an, r, η)

)2

=
η

k
e−2i(k−η)|R|

N∑
n=1

e2ikθn·(r′−r)

=
Nη

k
e−2i(k−η)|R|

J0(2|kr′ − ηr|) + 1

N

N∑
n=1

∞∑
p=−∞,p ̸=0

ipJp(2|kr′ − ηr|)eip(θn−ϕ′)

 .

Therefore, we obtain the following:(
N∑

n=1

G(an, r
′, k)

G(an, r, η)

)2

−
N∑

n=1

(
G(an, r

′, k)

G(an, r, η)

)2

=
N2η

k
e−i(k−η)|R|

×
(
J0(|kr′ − ηr|) + Λ(k, η)

N

)2

− e−2i(k−η)|R|Nη

k

(
J0(2|kr′ − ηr|) + Λ(2k, 2η)

N

)
.

(3.3)

Since |e−i(k−η)|R|| = |e−2i(k−η)|R|| = 1, by combining (3.2) and (3.3), the structure (3.1) can
be derived. □

Based on the Theorem 3.1, the map of FBFM(r, η) will contain peaks of large magnitudes at
r = (k/η)r′ because J0(|kr′ − ηr|) reaches its maximum value when |kr′ − ηr| = 0. This is
the theoretical reason why accurate locations and shapes of small anomalies cannot be retrieved
using the map of FBFM(r, η) without background information (exact value of εb and σb). We
will examine some further properties of FBFM(r, η) by applying a numerical simulation.

4. SIMULATION RESULTS AND DISCUSSIONS

To support the result in Theorem 3.1, we present some numerical simulation results at an-
gular frequency ω = 2πf with f = 1GHz. To this end, we select two small anomalies Σs

with radii αs = 0.01m; locations r1 = (0.01m, 0.03m), and r2 = (−0.04m,−0.02m);
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material properties (ε1, σ1) = (55ε0, 1.2 S/m) and (ε2, σ2) = (45ε0, 1.0 S/m); and ε0 =
8.854 × 10−12 F/m as the vacuum permittivity. We set the homogeneous background to be
filled by a matching liquid with material properties (εb, σb) = (20ε0, 0.2 S/m) and the imag-
ing region Ω is (−0.1m, 0.1m) × (−0.1m, 0.1m). To transmit and receive signals, we use
N = 16 dipole antennas An with the following locations:

an = 0.09m(cos θn, sin θn), θn =
2nπ

N
.

With this setting, the measurement data Sscat(n,m) and the incident field G(an, r, η) for each
r ∈ Ω and η are generated by using CST STUDIO SUITE. After the generation of the mea-
surement data, a 20 dB white Gaussian random noise was added. Figure 2 illustrates numerical
simulation with and without anomalies.
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(c) Multiple Anomalies

FIGURE 2. Illustration of the Numerical Simulations.

Example 4.1 (Inaccurate Background Permittivity). We first assume that only the exact value
of εb is unknown i.e., we apply ε′ instead of the true εb and corresponding wavenumber ηε =
ω
√
µb(ε′ + iσb/ω). In this case, since ωεb ≫ σb, the identified location is as follows:

r =

(
k

ηε

)
r′ =

√
ωεb + iσb
ωε′ + iσb

r′ ≈
√

εb
ε′
r′.

Hence, we can observe that if ε′ > εb, then the identified locations (k/ηε)r
′ will be concen-

trated to the origin and the size of the identified anomaly will be smaller than the true anomaly.
Otherwise, if ε′ < εb, then the identified locations (k/ηε)r′ will be situated far from the origin
and the size of identified anomaly will be larger than the true anomaly. Figure 3 illustrates this
outcome.

Figure 4 presents maps of FBFM(r, ηε) with various selection of ε′ for identifying a single
anomaly Σ1. Following the result of Theorem 3.1, an inaccurate locations (k/ηε)r′ ∈ Σ1 was
identified instead of the true one r′. Notice that the identified location and size of Σ1 is close to
the origin and smaller than the true one, respectively when ε′ > εb. In contrast, if ε′ < εb, the
identified location and size of Σ1 is far from the origin and larger than the true one, respectively.
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O (k/ηε)r
′ r′

(a) ε′ > εb case

O r′ (k/ηε)r
′

(b) ε′ < εb case

FIGURE 3. Description of the simulation result. Cyan- and orange-colored
circles are true and identified anomalies via FBFM(r, ηε), respectively.

Figure 5 exhibits maps of FBFM(r, ηε) with various selection of ε′ in the presence of Σ1 and
Σ2. Similar to the results in Fig. 4, the identified locations rs are concentrated when ε′ > εb
and scattered when ε′ < εb.

Finally, it is noteworthy that we are only able to recognize the existence of small anomalies
from the map of FBFM(r, ηε). Moreover, if ε′ ≫ εb, it will be difficult to recognize small
anomaly because several artifacts will be included in the map of FBFM(r, ηε), and identified
shape will be too small to distinguish from the artifacts (refer to Figs. 4(c) and 5(c)).

Example 4.2 (Inaccurate Background Conductivity). We next assume that only the exact value
of σb is unknown i.e., we apply σ′ instead of the true σb and corresponding wavenumber
ησ = ω

√
µb(εb + iσ′/ω). In this case, if ωεb ≫ σb, σ

′, the identified location becomes

r =

(
k

ηε

)
r′ =

√
ωεb + iσb
ωεb + iσ′ r

′ ≈ r′.

Hence, in contrast to Example 4.1, it will be possible to identify the almost true location and
shape of Σs by selecting a small value of σ′.

Figure 6 shows maps of FBFM(r, ησ) with various selection of σ′ for identifying single
anomaly Σ1. Following the result in Theorem 3.1, the locations (k/ησ)r

′ for r′ ∈ Σ1 is
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FIGURE 4. (Example 4.1) Maps of FBFM(r, ηε) with various selection of ε′.
Red-colored dashed circles are the boundaries of anomalies.

identified; however, when the selected value of σ′ is small or satisfies ωεb ≫ σ′, the almost
true location and size of Σ1 is retrieved because (k/ηε)r

′ ≈ r′ ∈ Σ1. However, if condition
ωεb ≫ σ′ does not hold, it is not possible to identify the location r′ ∈ Σ1. Moreover, in
contrast to the results in Example 4.1, the existence of anomalies cannot be recognized via the
map of FBFM(r, ησ).

Figure 7 exhibits maps of FBFM(r, ησ) with various selection of σ′ in the presence of Σ1

and Σ2. Similar to the results in Fig. 6, although some artifacts are included in the map, it is
possible to identify the almost true location and size of anomalies if ωεb ≫ σ′ or σ′ is very
small; however, it is not possible to recognize the existence of anomalies if condition ωεb ≫ σ′

does not hold.

5. CONCLUSION

Based on the integral equation for the scattered-field S−parameter in the presence of small
anomalies, the mathematical structure of the imaging function of the BFM was investigated by
establishing a relationship with an infinite series of Bessel functions, antenna arrangements,
and anomaly properties when the exact values of background permittivity and conductivity are
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FIGURE 5. (Example 4.1) Maps of FBFM(r, ηε) with various selection of ε′.
Red-colored dashed circles are the boundaries of anomalies.

unknown. Based on the structure investigated, we confirmed the reason that the locations of
anomalies were identified inaccurately. Based on the simulation results using noisy data, we
determined that the identified location and size of anomalies are inaccurate when inaccurate
values for background permittivity were applied, but almost true location and size of anomalies
are retrieved when the inaccurate value of background conductivity is very small.

In this study, we considered the imaging of small, circle-like, two-dimensional anomalies.
Extension to arbitrarily shaped large anomalies in two- and three- dimensional problems will be
an interesting and significant research subject. Moreover, we performed the simulation using
synthetic data, conducting mathematical analyses and numerical simulations using real-world
microwave imaging. Development and investigation of an effective algorithm for estimating
background wavenumbers will be the subject of forthcoming work.
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FIGURE 6. (Example 4.2) Maps of FBFM(r, ησ) with various selection of σ′.
Red-colored dashed circles are the boundaries of anomalies.
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