In order to process video data effectively, it is required that the content information of video data is loaded in database and semantics-based retrieval method can be available for various queries of users. In this paper, we propose a video retrieval system which support semantics retrieval of various users for massive video data by user's keywords and comparison area learning based on automatic agent. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user becomes a query image and searches the most similar key frame through color histogram comparison and comparison area learning method that proposed. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 93 percents.
Jo, Min-Seok;Chun, Hye-won;Han, Seong-Soo;Jeong, Chang-Sung
KIPS Transactions on Software and Data Engineering
/
v.11
no.1
/
pp.29-34
/
2022
We propose a novel network architecture and build dataset for recognizing clickable objects on mobile device screens. The data was collected based on clickable objects on the mobile device screen that have numerous resolution, and a total of 24,937 annotation data were subdivided into seven categories: text, edit text, image, button, region, status bar, and navigation bar. We use the Deconvolution Single Shot Detector as a baseline, the backbone network with Squeeze-and-Excitation blocks, the Single Shot Detector layer structure to derive inference results and the Feature pyramid networks structure. Also we efficiently extract features by changing the input resolution of the existing 1:1 ratio of the network to a 1:2 ratio similar to the mobile device screen. As a result of experimenting with the dataset we have built, the mean average precision was improved by up to 101% compared to baseline.
Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.895-897
/
2019
모바일의 기술 발전과 소셜미디어 사용의 증가로 수없이 많은 멀티미디어 콘텐츠들이 생성되고 있다. 이러한 많은 양의 콘텐츠 중에서 사용자가 원하는 이미지를 효율적으로 찾기 위해 의미 기반 이미지 검색을 이용한다. 이 검색 기법은 이미지에 의미 있는 정보들을 이용하여 사용자가 찾고 자하는 이미지를 정확하게 찾을 수 있다. 본 연구에서는 모바일 환경에서 이미지가 가질 수 있는 의미적 정보를 어노테이션 하고 이와 더불어 모바일에 있는 이미지에 풍성한 어노테이션을 위해 딥러닝 기술을 이용하여 다양한 태그들을 자동 생성하도록 구현하였다. 이렇게 생성된 어노테이션 정보들은 의미적 기반 태그를 통해 RDF 트리플로 확장된다. SPARQL 질의어를 이용하여 의미 기반 이미지 검색을 할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.841-844
/
2015
이미지 인식과 내용분석은 이미지 검색과 멀티미디어 데이터 활용 분야에서 핵심기술이라 할 수 있다. 특히 최근 스마트폰, 디지털 카메라, 블랙박스 등에서 수집되는 영상 데이터 양이 급격히 증가하고 있다. 이에 따라 이미지를 인식하고 내용을 분석하여 활용할 수 있는 기술에 대한 요구가 점차 증대되고 있다. 본 논문에서는 이미지 내용정보를 이용하여 자몽으로 이미지로부터 태그정보를 추출하는 방법을 제안한다. 이 방법은 기계학습 기법인 CNN(Convolutional Neural Network)에 ImageNet의 이미지 데이터와 라벨을 학습시킨 후, 새로운 이미지로부터 라벨정보를 추출하는 것이다. 추출된 라벨을 태그로 간주하고 검색에 활용한다면 기존 검색시스템의 정확도를 향상시킬 수 있다는 것을 실험을 통하여 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.300-303
/
2011
이미지 어노테이션 기법은 효과적인 이마지 공유 및 검색을 위하여 활발하게 연구되고 있는 연구분야 중 하나로서, 최근에는 사용자들에 의하여 제작되는 방대한 양의 이미지 데이터 및 태그 정보를 제공하는 Flick와 같은 소셜 이마지 데이터베이스를 활용함으로써 이미지 어노테이션 및 이미지 검색을 효과적으로 수행하고자 하는 다양한 연구들이 시도되고 있다. 본 논문에서는 이미지 지식정보의 관리 및 공유를 위한 온톨로지와 소셜 이마지 데이터베이스를 활용하여 이미지 어노테이션을 수행하기 위한 시스템을 제안한다. 본 논문에서 제안하는 시스템은 소셜 이미지 데이터베이스를 활용하여 의미 있는 개념들을 이미지 어노테이션에 활용하며, 지식 관리 체계인 온툴로지를 이용하여 이미지 데이터베이스 내의 이미지 및 개념간에 존재하는 의미적 관련성을 기반으로 보다 효율적인 이미지 검색을 수행하고자 한다.
The current study aimed to verify the image segmentation ability of rays in tangential thin sections of conifers using artificial intelligence technology. The applied model was Mask region-based convolutional neural network (Mask R-CNN) and softwoods (viz. Picea jezoensis, Larix gmelinii, Abies nephrolepis, Abies koreana, Ginkgo biloba, Taxus cuspidata, Cryptomeria japonica, Cedrus deodara, Pinus koraiensis) were selected for the study. To take digital pictures, thin sections of thickness 10-15 ㎛ were cut using a microtome, and then stained using a 1:1 mixture of 0.5% astra blue and 1% safranin. In the digital images, rays were selected as detection objects, and Computer Vision Annotation Tool was used to annotate the rays in the training images taken from the tangential sections of the woods. The performance of the Mask R-CNN applied to select rays was as high as 0.837 mean average precision and saving the time more than half of that required for Ground Truth. During the image analysis process, however, division of the rays into two or more rays occurred. This caused some errors in the measurement of the ray height. To improve the image processing algorithms, further work on combining the fragments of a ray into one ray segment, and increasing the precision of the boundary between rays and the neighboring tissues is required.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.9
no.11
/
pp.1133-1144
/
2019
Recently, the amount of image on the Internet has rapidly increased, due to the advancement of smart devices and various approaches to effective image retrieval have been researched under these situation. Existing image retrieval methods simply detect the objects in a image and carry out image retrieval based on the label of each object. Therefore, the semantic gap occurs between the image desired by a user and the image obtained from the retrieval result. To reduce the semantic gap in image retrievals, we connect the module for multiple objects classification based on deep learning with the module for human behavior classification. And we combine the connected modules with a behavior ontology. That is to say, we propose an image retrieval system considering the relationship between objects by using the combination of deep learning and behavior ontology. We analyzed the experiment results using walking and running data to take into account dynamic behaviors in images. The proposed method can be extended to the study of automatic annotation generation of images that can improve the accuracy of image retrieval results.
Retrieval of images from image databases by spatial relationship can be effectively performed through visual interface systems. In these systems, the representation of image with 2D strings, which are derived from symbolic projections, provides an efficient and natural way to construct image index and is also an ideal representation for the visual query. With this approach, retrieval is reduced to matching two symbolic strings. However, using 2D-string representations, spatial relationships between the objects in the image might not be exactly specified. Ambiguities arise for the retrieval of images of 3D scenes. In order to remove ambiguous description of object spatial relationships, in this paper, images are referred by considering spatial relationships using the spatial location algebra for the 3D image scene. Also, we remove the repetitive spatial relationships using the several reduction rules. A reduction mechanism using these rules can be used in query processing systems that retrieve images by content. This could give better precision and flexibility in image retrieval.
Recently, folksonomy-based image-sharing sites where users cooperatively make and utilize tags of image annotation have been gaining popularity. Typically, these sites retrieve images for a user request using simple text-based matching and display retrieved images in the form of photo stream. However, these tags are personal and subjective and images are not categorized, which results in poor retrieval accuracy and low user satisfaction. In this paper, we propose a categorization scheme for folksonomy images which can improve the retrieval accuracy in the tag-based image retrieval systems. Consequently, images are classified by the semantic similarity using text-information and image-information generated on the folksonomy. To evaluate the performance of our proposed scheme, we collect folksonomy images and categorize them using text features and image features. And then, we compare its retrieval accuracy with that of existing systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.