References
- R. Datta, D. Joshi, J. Li and J. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age. Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval. (2005), November 10-11, Hilton, Singapore.
- Y. Rui, T.S. Huang, and S.-F. Chang, Image retrieval: Current techniques, promising directions, and open issues. Journal of visual communication and image representation. (1999), Vol. 10, pp.39-62. https://doi.org/10.1006/jvci.1999.0413
- M. Singha and K. Hemachandran, Content based image retrieval using color and texture. Signal & Image Processing: An International Journal (SIPIJ). (2012), Vol. 3, pp.39-57.
- F. Long, H. Zhang and D. D. Feng, Fundamentals of content based image retrieval, Technological Fundamentals and Applications Springer-Verlag (2003)
- B. Dinakaran, J. Annapurna, and C. A. Kumar, Interactive image retrieval using text and image content. Cybernetics and Information Technologies. (2010), Vol. 10, pp. 20-30.
- H. H. Wang, D. Mohamad, and N. Ismail, Image Retrieval: Techniques, Challenge, and Trend. International conference on Machine Vision, Image processing and Pattern Analysis. (2009), Bangkok, Citeseer.
- N. Shanmugapriya and R. Nallusamy, A new content based image retrieval system using GMM and relevance feedback. Journal of Computer Science. (2013), Vol. 10, No. 2, pp. 330-340. https://doi.org/10.3844/jcssp.2014.330.340
- Z. Mehmood, F. Abbas, T. Mahmood, M. A. Javid, A. Rehman, and T. Nawaz, Content-based image retrieval based on visual words fusion versus features fusion of local and global features, Arabian Journal for Science and Engineering, (2018), pp. 1-20.
- Ansari, Mohd & Dixit, Manish & Kurchaniya, Diksha & Johari, Punit. An Effective Approach to an Image Retrieval using SVM Classifier. International Journal of Computer Sciences and Engineering. (2017), Vol. 5, pp. 62-72. https://doi.org/10.26438/ijcse/v5i9.6267
- Ansa Saju, I. Thusnavis Bella Mary, A. Vasuki, P. S. Lakshmi, Reduction of semantic gap using relevance feedback technique in image retrieval system. ICADIWT (2014), pp. 148-153.
- Bai, C., Huang, L., Pan, X,; Zheng, J., Chen, S., Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing, (2018), Vol. 303, pp. 60-67 https://doi.org/10.1016/j.neucom.2018.04.034
- Ouhda, M., El Asnaoui, K., Aksasse, B., Ouanan, M. Content-Based Image Retrieval Using Convolutional Neural Networks, Lecture Notes in Real-Time Intelligent Systems. Advances in Intelligent System and Computing, (2019), pp. 463-473.
- S. Ren, K. He, R. B. Girshick, and J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. In NIPS. (2015), pp. 91-99.
- C. Thurau and V. Hlava, Pose primitive based human action recognition in videos or still images. Proceedings of the in 2008 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). (2008).
- https://ko.wikipedia.org/wiki/Ontology, Jun 12(2019).
- C. Schuldt, I. Laptev and B. Caputo, Recognizing Human Actions: A Local SVM Approach. presented at Proceedings of the International Conference on Pattern Recognition (ICPR). (2004), pp. 32-36.
- J.-B. Lamy, Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artificial Intelligence in Medicine. (2017), Vol. 80, pp. 11-28. https://doi.org/10.1016/j.artmed.2017.07.002