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1. INTRODUCTION 

The anatomical features of woods vary with tree spe-
cies. Therefore, by observing the anatomical features of 
wood in cross, tangential, and radial sections of the wood 
under light microscope, different types of wood can be 
identified (IAWA Committee, 1989, 2004).  

The anatomical features of softwoods typically used 
for wood identification are the presence or absence of 

intercellular resin canals, bordered pit’s lines or spiral 
thickening observed in axial tracheids, axial parenchyma 
cells, and the shape of cross field fits, rays, and aspira-
ted pits (Choi et al., 2022; Eom and Park, 2018; Kwon 
et al., 2020; Lee and Bae, 2021; Lee et al., 2021a, 
2021b; Nam and Kim, 2021; Park et al., 1987). More-
over, the size of wood cells or tissues can also be used 
to identify wood (Lee et al., 2009; Seo and Eom, 2017; 
Seo et al., 2014), but such data are insufficient to draw 
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any inference.
To apply the size of wood tissues to species iden-

tification, considerable measurement data are required, 
which requires a huge amount of time. Also, long work-
ing hours cause both physical and mental fatigue, which 
in turn, may reduce measurement accuracy. To address 
such issues, automatic wood identification technique 
based on image processing is gaining popularity in 
recent years (Kwon et al., 2017; Lopes et al., 2021; 
Ravindran et al., 2021). 

Quantitative wood anatomy involves quantitative ana-
lysis of anatomical features of wood and evaluation of 
its geographical origin and growing condition based on 
the anatomical features (Gebregeorgis et al., 2021; von 
Arx et al., 2016). To note, the anatomical structure of 
wood varies from tree species to species, while external 
environmental factors influence the size of wood cells 
(da Silva et al., 2021; Hwang et al., 2020; Kim et al., 
2018; Seo and Eom, 2017; Seo et al., 2014). Therefore, 
based on this, the quantitative data can be used to iden-
tify a wood and its geographical origin. The quantitative 
data can also be used to control the distribution of wood 
of endangered species in the wood market (de Palacios 
et al., 2020; Lee et al., 2020; Parades-Villanueva et al., 
2018; Savero et al., 2020; Yu et al., 2017). 

The size of rays in a tangential section of wood is 
large enough to be identified under a loupe and is diffe-
rent for different tree species (Alves and Angyalossy- 
Alfonso, 2000; Burgert and Eckstein, 2001). This signi-
fies that the axial size of the rays in the tangential sec-
tion can be used as a criterion to identify wood. Further-
more, not too many studies have been done on applica-
tion of ray size in wood identification.

Deep learning is a part of machine learning that 
enables automatic measurement, a vast amount of data 
acquisition and analysis through learning. Therefore, deep 
learning has the potential to automatically identify wood 
species efficiently (de Geus et al., 2021; Fabijańska et 
al., 2021; Fathurahman et al., 2021; Wu et al., 2021). 

To apply deep learning in wood identification using size 
of rays in tangential section, quantitative data on ray 
size are needed.

The present study was conducted to confirm the de-
tectability of rays in the tangential section of conifers 
using mask region-based convolutional neural network 
(Mask R-CNN), which is an instance segmentation model 
among image segmentation models, and the accuracy of 
the instance segmentation. This work is expected to con-
tribute to automatic wood identification means and bring 
improvement in the strategy of using a large amount of 
quantitative wood anatomical data for wood identifica-
tion. 

2. MATERIALS and METHODS

2.1. Wood samples and their digital image 
preparation

2.1.1. Wood samples
Softwoods such as P. jezoensis, L. gmelinii, A. 

nephrolepis, A. koreana, G. biloba, T. cuspidata, C. 
japonica, C. deodara, and P. koraiensis were selected as 
experimental samples (Table 1).

Cubes of length 1 cm were cut out of the experimental 

Table 1. List of softwoods used in the study

Family Scientific name Common name

Ginkgoaceae Ginkgo biloba Maidenhair tree

Pinaceae Abies koreana Korean fir

Pinaceae Abies nephrolepis Khingan fir

Pinaceae Cedrus deodara Himalayan cedar

Pinaceae Larix gmelinii Dahurian larch

Pinaceae Picea jezoensis Dark-bark spruce

Pinaceae Pinus koraiensis Korean pine

Taxaceae Taxus cuspidata Rigid-branch yew

Taxodiaceae Cryptomeria japonica Japanese cedar
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woods to make cross thin sections for examination under 
optical microscope. The cubes were softened in a mixture 
of glycerin and distilled water (1:4) adjusted at 60℃ for 
1 to 3 days. The softened cubes were cut into sections 
of thickness 10 to 15 μm using a small sliding micro-
tome (GSL1, WSL), and then stained with a mixture 
(1:1) of astra blue (0.5%) and safranin (1%) to contrast 
colorations between cellulose (blue) and lignified cell 
walls (red). The stained thin sections were dehydrated 
by sequentially immersing in 30%, 50%, 70%, and 100% 
ethanol to minimize bubble generation while mounting 
with a cover glass. Euparal was used for mounting.

2.1.2. Digital images
Digital images of cross, tangential, and radial sections 

were obtained using a slide scanner (Axio Scan.Z1, Zeiss, 
Oberkochen, Germany). Magnification of the objective 
lens was 20× and numerical aperture (NA) was 0.8. The 
images cropped to 2,048 × 2,048 pixels were used for 
training the model and the size per pixel was 0.220 μm 
× 0.220 μm. 

2.2. Annotation

The training course for instance segmentation requires 
an annotation marking the boundary of the target object 
area. Only tangential section images were taken, and 
Computer Vision Annotation Tool (CVAT) was used to 
annotate the rays in the tangential section. The total 
number of tangential images taken was 524, out of which 
400 images were used for training and 124 for verifica-
tion. The total number of annotations was 633, out of 
which 427 were used for training and 206 for verifica-
tion. The annotated images were evenly selected from 
all tangential images to avoid overestimation of any par-
ticular image. 

2.3. Test image set

To quantitatively test the performance of the trained 

model, test images were prepared using the images that 
had not been used for training purpose. The boundary of 
the rays in the test images were marked to produce the 
ground truth (GT) data. The GT data were used to verify 
the accuracy of the annotation result by CVAT. The 
accuracy was evaluated as the mean average precision 
(mAP), which is a quantitative indicator used to select 
a training model for measuring the ray height.

2.4. Image segmentation and training

In this study, Mask R-CNN model was used for image 
segmentation. Mask R-CNN is an extended version of 
Fast R-CNN, one of the existing object detection models, 
and is used to divide the boundary of an object in the 
detected area (He et al., 2017). Object detection is a 
technology to detect the location information of an ob-
ject in an image and classification of objects in a detec-
ted area. On the other hand, instance segmentation is a 
technique to distinguish individual objects from over-
lapping of the same type of objects. 

The Mask R-CNN model used for training is based 
on Python, Tensorflow, and Keras (GitHub, 2022). For 
transfer learning, a weight file trained using MS COCO 
(Microsoft Common Objects in Context) dataset was 
used. 

The training of the model in the present study were 
conducted using Tensorflow 1.14.0, Keras 2.1.6, and 
Python 3.7.5 for segmentation of rays in the tangential 
section. Computers with Intel Xeon (2.2 GHz, 10 Core/20 
Thread, 13.75 MB Cache), 192GB RAM, and Nvidia 
RTX 2080Ti were used for training.

3. RESULTS and DISCUSSION

3.1. Training of Mask region-based 
convolutional neural network (R-CNN)

The hyper-parameters and basic values of Mask 
R-CNN used in this study are as follows.
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BACKBONE = resnet50
DETECTION_MIN_CONFIDENCE = 0.7 
IMAGE_MIN_DIM = 512
IMAGE_MAX_DIM = 512
LOSS_WEIGHTS: rpn_class_loss = 1.0
LOSS_WEIGHTS: rpn_bbox_loss = 1.0
LOSS_WEIGHTS: mrcnn_class_loss = 1.0 
LOSS_WEIGHTS: mrcnn_bbox_loss = 1.0 
LOSS_WEIGHTS: mrcnn_mask_loss = 1.0

Among the above factors, the model was trained by 
varying the values of IMAGE_MIN_DIM and IMAGE_ 
MAX_DIM, which determine the size of the input image, 
and LOSS_WEIGHTS: mrcnnn_mask_loss, which greatly 
affects the alignment accuracy of the generated mask. 
The learning rate, momentum, and weight decay were 
0.001, 0.9, and 0.0001, respectively. The batch size set 
in this study was 4, and learning was conducted for 10 
to 20 epochs. The input image sizes were 512 × 512 
and 1,024 × 1,024.

As a result of training under the above conditions, the 
highest mAP was resnet50 as a backbone, and 0.837 
was found when the input image size was 1,024 × 1,024 
(Table 2). The correlation analysis with GT also showed 
significant results, and it was confirmed that the time 
taken to derive the results was half that of GT. So, it 
was verified that the applied model could be used to 

automatically measure the height of rays.

3.2. Instance segmentation

When the height of the rays was high, there were 
rays divided into two or more rays and recognized as 
separate rays (Left in Fig. 1). These were called as 
fragmented rays in this study. To minimize the decrease 
in the average height of the rays due to fragmentation, 
image processing was done to combine the fragmented 
rays into one. Through image processing, a large number 
of fragmented rays was corrected to form combined rays 
(Right in Fig. 1). However, not all fragmented rays 
could be corrected which needs to be improved in the 
future. 

3.3. Comparison of ray heights by tree 
species

For G. biloba, T. cuspidata, and C. japonica, there 
was a difference of more than 100 between the numbers 
of rays of GT and instance segmentation (Table 3). The 
average height of the rays in these species did not 
exceed 100 μm (Fig. 2 the uppermost row). Except for 
P. koraiensis, the difference in the number of rays from 
GT and instance segmentation was relatively low. The 
reason for observing more differences in tree species 
having rays lower than 100 μm might be poor perfor-

Table 2. Hyper-parameters and mean average precision (mAP) used to train the Mask R-CNN model

Image size Backbone Mask loss Epoch mAP

512 × 512 resnet50 1.0  8 0.616

512 × 512 resnet50 1.0 12 0.673

1,024 × 1,024 resnet50 1.0  8 0.837

1,024 × 1,024 resnet50 1.0 12 0.609

1,024 × 1,024 resnet50 2.0  7 0.777

1,024 × 1,024 resnet50 2.0 12 0.836

Mask R-CNN: mask region-based convolutional neural network.
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mance of Mark R-CNN for small rays. Even for tree 
species with relatively high rays, the mean height of the 
rays decreased due to fragmentation.

It was verified that kurtosis can be used as a key 
parameter to classify tree species (Fig. 2). Because, des-
pite of the problem with fragmentation, there was a 
difference in the kurtosis of the height of the rays 
according to tree species except for P. koraiensis. The 
kurtosis of G. biloba, T. cuspidata, and C. japonica was 
more than 2.0, P. jezoensis, L. gmelinii, A. nephrolepis, 

A. koreana was approximately 1.0, and C. deodara 
showed negative values (Fig. 2). Only the tree species 
with a skewness of 2.0 or more had a mean height of 
rays approximately 100 μm or less.

4. CONCLUSIONS

The present study confirmed that Mask R-CNN, 
trained to detect rays in the tangential section, can be 
used to measure rays’ height. The highest mAP of the 

Fig. 1. Examples of the fragmented rays (left) and corrections of the same rays (right).

Table 3. Comparisons of the number of rays from the ground truth and instance segmentation, and the mean 
heights from the ground truth

Wood species Ground truth Instance segmentation Height of rays (μm)

Abies koreana 382 344 155.5

Abies nephrolepis 320 295 138.9

Cedrus deodara 256 243 207.4

Cryptomeria japonica 500 400  77.3

Ginkgo biloba 447 246  71.4

Larix gmelinii 289 293 158.0

Picea jezoensis 359 396 134.2

Pinus koraiensis 197  85 146.7

Taxus cuspidate 501 384  84.1
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trained Mask R-CNN was 0.837. The height of the rays 
measured through Mask R-CNN showed a very high 
correlation with the results from GT, and the time to ob-
tain the result using the model took less than half of the 
time required for the GT. 

The frequency distribution of the ray height was veri-
fied to be unique according to the wood species. Based 
on these results, it was concluded that statistical values 
such as average values, skewness, or kurtosis of the 
height of rays from different wood species can be used 
as a basis for identification of the wood species. To 
apply these values, however, more improved object seg-
mentation model and a large number of data on the 
height of rays are needed.

The major problems in the measurement of the height 
of rays using Mask R-CNN were the undetected rays 
and fragmentation of the rays. These two issues caused 
reduction in the mean ray height in each tree species. 
The fragmentation mostly occurred in tree species with 
ray height greater or equal to 100 μm. For more accu-
racy and reliable results, further research is necessary on 
improving the detection performance of the trained model 
and reducing the fragmentation of rays.
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Fig. 2. Histogram of ray heights from the experimental tree species.
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