• Title/Summary/Keyword: Icheon observatory

Search Result 7, Processing Time 0.023 seconds

On the Temporal Variability of Geomagnetic Field and Transfer Function at Icheon Observatory (이천관측소에서 측정된 지자기장 및 지자기 전달함수의 시간적 변동성)

  • Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.604-614
    • /
    • 2004
  • Using three-components geomagnetic data from a permanent geomagnetic observatory in Icheon, we have computed the power spectrum of each geomagnetic component, amplitude, phase and estimation error of transfer function for each day in the 6 months period July 2002${\sim}$December 2002. The temporal variation of power spectrum have random appearances with repeating relative strong and weak magnitude, which is considered as solar activities. However, there is no clear long-term trend. In the case of amplitude, phase and error of transfer function, even though there are some random patterns over the periods of 1000 s and under 100 s, they seem to be comparatively stable without manifest temporal changes. Futhermore, we have estimated electrical field by assuming P$_{1}\;^{0}$ spherical harmonics and then calculated the approximated apparent resistivity for each day. As a result, the variations of resistivity depend on the temporal magnitude of spectral power in horizontal magnetic fields rather than hydrological changes in near surface.

Development of Thermostat for the Fluxgate Magnetometer in Icheon Geomagnetic Observatory and Stability Evaluation after Installation (이천 지자기 관측소 플럭스게이트 자력계 온도 조절 장치 개발 및 설치 후 안정성 자체 평가 )

  • Dooyoung, Choi;Seunguk, Lee;Joonsung, Kim;Dae-Young, Lee;Kyu-Cheol, Choi;Junghee, Cho
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This paper reports on the design and installation of a thermostat to keep the temperature of the fluxgate magnetometer constant and the data stability evaluation after installation. The thermostat was installed at the Icheon Geomagnetic Observatory operated by the Korean Space Weather Center of National Radio Research Agency. It was designed in consideration of stability of temperature control against safety incident, potential effects on magnetic field measurement, and the temperature control efficiency. After the temperature control device was installed, it was confirmed that the temperature was constantly maintained at the level of 20℃. Delta F and baseline values were used to evaluate geomagnetic data stability, and it was confirmed that delta F and baseline fluctuations were reduced after installation of the thermostat.

Installation of Induced Current Measurement Systems in Substations and Analysis of GIC Data during Geomagnetic Storms

  • Choi, Kyu-Cheol;Park, Mi-Young;Ryu, Youngsoo;Hong, Youngsu;Yi, Jong-Hyuk;Park, Sung-Won;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • Coronal Mass Ejections (CME), which originate from active regions of the Sun's surface, e.g., sunspots, result in geomagnetic storms on Earth. The variation of the Earth's geomagnetic field during such storms induces surface currents that could cause breakdowns in electricity power grids. Hence, it is essential to both monitor Geomagnetically Induced Currents (GICs) in real time and analyze previous GIC data. In 2012, in order to monitor the variation of GICs, the Korean Space Weather Center (KSWC) installed an induced current measurement system at SINGAPYEONG Substation, which is equipped with 765 kV extra-high-voltage transformers. Furthermore, in 2014, two induced current measurement systems were installed on the 345 kV high-voltage transformers at the MIGEUM and SINPOCHEON substations. This paper reports the installation process of the induced current measurement systems at these three substations. Furthermore, it presents the results of both an analysis performed using GIC data measured at the SINGAPYEONG Substation during periods of geomagnetic storms from July 2013 through April 2015 and the comparison between the obtained GIC data and magnetic field variation (dH/dt) data measured at the Icheon geomagnetic observatory.

THE STATUS QUO OF THE GEOMAGNETIC FIELD MEASUREMENTS IN KOREA (한국에서의 지구자기장관측의 현황)

  • LIM MU-TAEK;PARK YEONG-SUE;JUNG HYUN-KEY;LEE HEE-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.15-20
    • /
    • 2000
  • The geomagnetic measurements on the Korean Territory began in 1918 in the Incheon (Zinsen in Japanese pronunciation) Observatory of which the annual means of total magnetic field intensity, declination, and inclination still remain for 1918-1944. From 1970s, the National Geography Institute (NGI) and the Radio Research Laboratory (RRL) have tried independently to measure the geomagnetic field continuously. The RRL as the result of such efforts has installed 3 geomagnetic observatories, the first in Icheon and the second in Yongin in 1996, and the third in Jeju in 1997. From 1992, the Korea Institute of Geology, Mining and Materials (KIGAM) has tried also to measure the geomagnetism and as the result they have installed 2 geomagnetic observatories, one in Daejeon in 1998 and the other in Gyeongju in 2000. Nowadays, the RRL and the KIGAM collect the measured data into their own main computers by telecommunication in real time. The two institutions will cooperate in near future to link the two geomagnetic data bases so that the whole set of geomagnetic data measured on Korean Territory could be provided to the end users in Korea.

  • PDF

DEVELOPMENT OF 2.8-GHZ SOLAR FLUX RECEIVERS

  • Yun, Youngjoo;Park, Yong-Sun;Kim, Chang-Hee;Lee, Bangwon;Kim, Jung-Hoon;Yoo, Saeho;Lee, Chul-Hwan;Han, Jinwook;Kim, Young Yun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.201-207
    • /
    • 2014
  • We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at $100^{\circ}C$. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

An Analysis on the Geomagnetic Transfer Function at Yongin Observatory Using by RR (Remote Reference) and SNS (Signal Noise Separation) Technique (원격참조(RR: Remote Reference) 기법과 신호잡음분리(SNS: Signal Noise Separation)기술을 이용한 용인 관측소의 지자기 전달함수 분석)

  • Yang Junmo;Lee Duk-Kee;Kwon Byung-Doo;Ryu Yong-Gyu;Youn Yong-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.155-163
    • /
    • 2005
  • For an unbiased TF (Tansfer Function) estimations we investigate geomagnetic TF derived from ICHEON and YONGIN sites, employing RR (Remote Reference) and SNS (Signal Noise Separation) techniques. The Rh technique, which requires synchronized field variations recorded at a clean remote site, is a reliable method to minimize the bias of TF by uncorrelated noises in magnetic channels. Meanwhile, SNS technique based on the assumption of noise-free remote data can improve the signal-noise level by separating signal TF and noise TF, which is successfully applied to the environments with strong correlated noises. In this study, TF at YONGIN is analyzed using geomagnetic data from ICHEON site as a remote reference, which seem to have somewhat better data quality. The application of Rh technique reduces the bias of TF, which appears in single site robust estimation, and makes curves in the amplitude and phase of TF more smooth as frequency. Futhermore, in order to investigate noise source quantitatively, SNS technique is applied. The results of SNS suggest that dominant noise source seems to be located at western region of YONGIN. This noise source is considered to originate from railway system such as KTX and national subway. which passes through the west regions of YONGIN.

Restoration, Prediction and Noise Analysis of Geomagnetic Time-series Data (시계열 지자기 측정 자료의 복원, 예측 및 잡음 분석 연구)

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Suh, Baek-Soo;Lee, Duk-Kee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.613-628
    • /
    • 2011
  • Restoration, prediction and noise analysis of geomagnetic data measured in the Korean Peninsula were performed. Restoration methods based on an optimized principal component analysis (PCA) and the geostatistical kriging approach were proposed, and its effectiveness was also interpreted. The PCA-based method seemed to be effective to restore the periodical signals and the geostatistical approach was stable to fill the gaps of measurements. To analyze the noise level for each observatory, the geomagnetic time-series was plotted by scattergram which reflects the spatial variation, using data observed during same period. The scattergram showed that the observation made at Cheongyang seemed to have better quality in spatial continuity and stability, and the restoration result was also better than that of Icheon site. For the restoration, both of the methods, geostatistical and optimizaed PCA, showed stable result when the missing of observation was within 20 points. However, in case of more missing observations than 20 points and prediction problem, the optimized PCA seemed to be closer to the real observation considering the frequency-domain characteristics. The prediction using the optimized PCA seems to be plausible for one day of period for interpretation.