An Analysis on the Geomagnetic Transfer Function at Yongin Observatory Using by RR (Remote Reference) and SNS (Signal Noise Separation) Technique

원격참조(RR: Remote Reference) 기법과 신호잡음분리(SNS: Signal Noise Separation)기술을 이용한 용인 관측소의 지자기 전달함수 분석

  • 양준모 (기상연구소 해양기상지진연구실) ;
  • 이덕기 (기상연구소 해양기상지진연구실) ;
  • 권병두 (서울대학교 지구과학교육과) ;
  • 류용규 (기상연구소 해양기상지진연구실) ;
  • 윤용훈 (기상연구소 해양기상지진연구실)
  • Published : 2005.04.01

Abstract

For an unbiased TF (Tansfer Function) estimations we investigate geomagnetic TF derived from ICHEON and YONGIN sites, employing RR (Remote Reference) and SNS (Signal Noise Separation) techniques. The Rh technique, which requires synchronized field variations recorded at a clean remote site, is a reliable method to minimize the bias of TF by uncorrelated noises in magnetic channels. Meanwhile, SNS technique based on the assumption of noise-free remote data can improve the signal-noise level by separating signal TF and noise TF, which is successfully applied to the environments with strong correlated noises. In this study, TF at YONGIN is analyzed using geomagnetic data from ICHEON site as a remote reference, which seem to have somewhat better data quality. The application of Rh technique reduces the bias of TF, which appears in single site robust estimation, and makes curves in the amplitude and phase of TF more smooth as frequency. Futhermore, in order to investigate noise source quantitatively, SNS technique is applied. The results of SNS suggest that dominant noise source seems to be located at western region of YONGIN. This noise source is considered to originate from railway system such as KTX and national subway. which passes through the west regions of YONGIN.

RR (Remote Reference)과 SNS (Signal Noise Separation) 기법을 도입하여 용인과 이천에서 측정된 지자기 전달함수를 분석하였다. RR 기법은 측정 사이트와 동시에 기록되는 원격참조 자료를 사용하여 자기장의 비상관 잡음 (un-correlated noise)을 제거하는 기법으로서 전달함수의 편향을 최소화한다. 한편 SNS 기법은 원격참조 자료가 잡음이 거의 없다는 가정을 바탕으로 신호에 의한 전달함수와 상관잡음(correlated noise)에 의한 전달함수를 분리하는 기법으로서, 측정 사이트에 상관잡음이 지배적인 경우에도 신호에 의해 전달함수를 성공적으로 추정할 수 있다. 본 연구에서는 자료의 질이 양호하다고 판단되는 이천을 원격참조 자료로 사용하여, 용인에서의 전달함수를 분석하였다. RR기법을 적용한 곁과, 단일 로버스트 추정(Single robust estimation)에서 나타났던 편향이 감소되었고, 주파수에 따른 전달함수의 연결성도 향상되었다. 잡음원에 대한 보다 정량적인 분석을 위해 SNS 기법을 적용한 결과, 주기 100초 이하에서 용인의 서쪽에 존재하는 잡음원의 존재를 확인하였다. 이러한 잡음원은 용인의 서쪽을 지나가는 국철, 고속철도 등의 철도 시스템에 의한 것으로 생각된다.

Keywords

References

  1. 양준모, 이덕기, 권병두, 윤용훈 (2004) 지자기 및 지자기 전달함수의 시간적 변동성. 한국지구과학회지, 25권, p. 604-614
  2. Chave, A.D., Thomson, D.J. and Ander, M. (1987) On the obust estimation of power spectra, coherence and tranferfunctions. J. Geophys. Res., v. 92, p. 633-648 https://doi.org/10.1029/JB092iB01p00633
  3. Chave, A.D. and Thomson, D.J. (1989) Some comments on the magnetotelluric response function estimation. J. geophys. Res., v. 94, p. 14215-14225 https://doi.org/10.1029/JB094iB10p14215
  4. Egbert, G.D. and Booker, J.R. (1986) Robust estimation of geomagnetic transfer functions. Geophys. J. Roy. Astr. Soc., v. 87, p. 173-194 https://doi.org/10.1111/j.1365-246X.1986.tb04552.x
  5. Egbert, G.D. and Likelybrooks, D. (1996) Single station magnetotelluric impedance estimation: coherence weighting and the regression M-estimation. Geophysics, v. 61, p. 964-970 https://doi.org/10.1190/1.1444045
  6. Egbert, G.D., Eisel, M., Boyd, O.S. and Morrison, H.E (2000) Pc3s: source effects in mid-latitude geomag-Geonetic transfer functions. Geophysical Research Letters, v. 124, p. 25-28
  7. Gamble, T.D., Goubau, W.M. and Clarke, J. (1979a) Magnetotellurics with a remote reference. Geophysics, v. 44, p. 55-68
  8. Gamble, T.D., Goubau, W.M. and Clarke, J. (1979b) Error analysis for remote reference magnetotellurics. Geophysics, v. 44, p. 959-968 https://doi.org/10.1190/1.1440988
  9. Honkura, Y. (1974) Electrical conductivity anomalies beneath the Japan arc. J. Geomagn. Geoelectr., v. 26, p. 147-171 https://doi.org/10.5636/jgg.26.147
  10. Jones, A.G. and Jodicke, H. (1984) Magnetotelluric transfer function estimation improvement by a coherence-based rejection technique: Presented at 54th Annual International Meeting, Soc. of Expl. Geophys., Extended Abstract, p. 51-55
  11. Junge, A. (1996) Characteristics of and correction for cultural noise. Surv. Geopys., v. 17, p. 361-391 https://doi.org/10.1007/BF01901639
  12. Larsen, J.C. (1989) Transfer functions: smooth robust estimates by least square and remote reference methods. Geophys. J. Int., v. 99, p. 655-663
  13. Larsen, J.C., Mackie, R.L., Manzella, A., Fiordelisi, A. and Rieven, S. (1996) Robust smooth magnetotelluric transfer functions. Geophys. J. Int., v. 124, p. 801-819 https://doi.org/10.1111/j.1365-246X.1996.tb05639.x
  14. Oettinger, G., Haak, V. and Larsen, J.C. (2001) Noise reduction in magnetotelluric time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif. Geophys. J. Int., v. 146, p. 659-669 https://doi.org/10.1046/j.1365-246X.2001.00473.x
  15. Pringle, D., Ingham, M., McKnight, D. and Chamalaun, F. (2000) Magnetovariational soundings across the South Island of New Zealand: difference m w s and the Southem Alps conductor. Physics of the Earth Planetary Interiors, v. 119, p. 285-298 https://doi.org/10.1016/S0031-9201(99)00173-9
  16. Shimoizumi, M., Mogi, T, Nakada, M., Yukutake, T, Handa, S., Tanaka, Y., and Uchida, H. (1997) Electrical conductivity anomalies beneath the western sea of Kyushu. Japan, Geophysical Research Letters, v. 24, p. 1551-1554 https://doi.org/10.1029/97GL01542
  17. Zonge, K.L. and Hughes, L.J. (1987) Controlled source audio-frequency magnetotelluric, in Electromagnetic Methods in Applied Geophysics Application, pp. 713- 809, ed. Nabighian, M. N., SEG, Tulsa