• Title/Summary/Keyword: IFP ideal

Search Result 11, Processing Time 0.022 seconds

IFP RINGS AND NEAR-IFP RINGS

  • Ham, Kyung-Yuen;Jeon, Young-Cheol;Kang, Jin-Woo;Kim, Nam-Kyun;Lee, Won-Jae;Lee, Yang;Ryu, Sung-Ju;Yang, Hae-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.727-740
    • /
    • 2008
  • A ring R is called IFP, due to Bell, if ab=0 implies aRb=0 for $a,b{\in}R$. Huh et al. showed that the IFP condition need not be preserved by polynomial ring extensions. But it is shown that ${\sum}^n_{i=0}$ $E_{ai}E$ is a nonzero nilpotent ideal of E whenever R is an IFP ring and $0{\neq}f{\in}F$ is nilpotent, where E is a polynomial ring over R, F is a polynomial ring over E, and $a_i^{'s}$ are the coefficients of f. we shall use the term near IFP to denote such a ring as having place near at the IFPness. In the present note the structures of IFP rings and near-IFP rings are observed, extending the classes of them. IFP rings are NI (i.e., nilpotent elements form an ideal). It is shown that the near-IFPness and the NIness are distinct each other, and the relations among them and related conditions are examined.

AN ANDERSON'S THEOREM ON NONCOMMUTATIVE RINGS

  • Huh, Chan;Kim, Nam-Kyun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.797-800
    • /
    • 2008
  • Let R be a ring and I be a proper ideal of R. For the case of R being commutative, Anderson proved that (*) there are only finitely many prime ideals minimal over I whenever every prime ideal minimal over I is finitely generated. We in this note extend the class of rings that satisfies the condition (*) to noncommutative rings, so called homomorphically IFP, which is a generalization of commutative rings. As a corollary we obtain that there are only finitely many minimal prime ideals in the polynomial ring over R when every minimal prime ideal of a homomorphically IFP ring R is finitely generated.

FURTHER STUDY OF RINGS IN WHICH ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • SANGBOK NAM;TAEHEE LEE;HWAJOON KIM
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1173-1180
    • /
    • 2023
  • In this paper, rings in which essential maximal right ideals are GP-injective are studied. Whether the rings with this condition satisfy von Neumann regularity is the goal of this study. The obtained research results are twofold: First, it was shown that this regularity holds even when the reduced ring is replaced with π-IFP and NI-ring. Second, it was shown that this regularity also holds even when the maximal right ideal is changed to GW-ideal. This can be interpreted as an extension of the existing results.

INSERTION-OF-IDEAL-FACTORS-PROPERTY

  • Baek, Sang Ha;Han, Jung Min;Kim, Eun Ji;Kim, Ju Hee;Kim, Jung Soo;Kim, Min Jae;Kim, Pyeong-Geun;Yi, Changyoon;Lee, Dong Geun;Lee, Seung Yeop;Seo, Dae Jae;Lee, Yang;Ryu, Sung Ju
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.617-623
    • /
    • 2014
  • Due to Bell, a ring R is usually said to be IFP if ab = 0 implies aRb = 0 for $a,b{\in}R$. It is shown that if f(x)g(x) = 0 for $f(x)=a_0+a_1x$ and $g(x)=b_0+{\cdots}+b_nx^n$ in R[x], then $(f(x)R[x])^{2n+2}g(x)=0$. Motivated by this results, we study the structure of the IFP when proper ideals are taken in place of R, introducing the concept of insertion-of-ideal-factors-property (simply, IIFP) as a generalization of the IFP. A ring R will be called an IIFP ring if ab = 0 (for $a,b{\in}R$) implies aIb = 0 for some proper nonzero ideal I of R, where R is assumed to be non-simple. We in this note study the basic structure of IIFP rings.

ON WEAK ARMENDARIZ IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.333-342
    • /
    • 2008
  • We introduce weak Armendariz ideals which are a generalization of ideals have the weakly insertion of factors property (or simply weakly IFP) and investigate their properties. Moreover, we prove that, if I is a weak Armendariz ideal of R, then I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is a weak Armendariz ring. Also we obtain a generalization of [8] and [9].

INSERTION-OF-FACTORS-PROPERTY WITH FACTORS MAXIMAL IDEALS

  • Jin, Hai-Lan;Jung, Da Woon;Lee, Yang;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.649-661
    • /
    • 2015
  • Insertion-of-factors-property, which was introduced by Bell, has a role in the study of various sorts of zero-divisors in noncommutative rings. We in this note consider this property in the case that factors are restricted to maximal ideals. A ring is called IMIP when it satisfies such property. It is shown that the Dorroh extension of A by K is an IMIP ring if and only if A is an IFP ring without identity, where A is a nil algebra over a field K. The structure of an IMIP ring is studied in relation to various kinds of rings which have roles in noncommutative ring theory.

REFLEXIVE PROPERTY SKEWED BY RING ENDOMORPHISMS

  • Kwak, Tai Keun;Lee, Yang;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.217-234
    • /
    • 2014
  • Mason extended the reflexive property for subgroups to right ideals, and examined various connections between these and related concepts. A ring was usually called reflexive if the zero ideal satisfies the reflexive property. We here study this property skewed by ring endomorphisms, introducing the concept of an ${\alpha}$-skew reflexive ring, where is an endomorphism of a given ring.

INSERTION PROPERTY BY ESSENTIAL IDEALS

  • Nam, Sang Bok;Seo, Yeonsook;Yun, Sang Jo
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • We discuss the condition that if ab = 0 for elements a, b in a ring R then aIb = 0 for some essential ideal I of R. A ring with such condition is called IEIP. We prove that a ring R is IEIP if and only if Dn(R) is IEIP for every n ≥ 2, where Dn(R) is the ring of n by n upper triangular matrices over R whose diagonals are equal. We construct an IEIP ring that is not Abelian and show that a well-known Abelian ring is not IEIP, noting that rings with the insertion-of-factors-property are Abelian.