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FURTHER STUDY OF RINGS IN WHICH ESSENTIAL

MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE†
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Abstract. In this paper, rings in which essential maximal right ideals are

GP-injective are studied. Whether the rings with this condition satisfy von
Neumann regularity is the goal of this study. The obtained research results

are twofold:

First, it was shown that this regularity holds even when the reduced
ring is replaced with π-IFP and NI-ring. Second, it was shown that this

regularity also holds even when the maximal right ideal is changed to GW-

ideal.
This can be interpreted as an extension of the existing results.
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1. Introduction

In all parts of this paper, R denotes an associative ring with identity, and all
modules are unitary. A ring R is called right principally injective (p-injective)
if every R-homomorphism from a principal right ideal to R is left multiplication
by an element of R. A right R-module M is called right generalized principally
injective (briefly right GP-injective) if, for any 0 ̸= a ∈ R , there exists a positive
integer n such that and any right R-homomorphism of into M extends to one
of R into M . Clearly, right p-injective modules are right GP-injective, but the
converse is not true by [6]. Recall that a ring R is called reduced if R has no
non-zero nilpotent elements. Due to Bell [3], a right (or left) ideal I of a ring R
is said to have the insertion-of-factors-property (simply, IFP) if ab ∈ I implies
aRb ∈ I for a, b ∈ R. Also we shall call a ring R an IFP ring if the zero ideal
of R has the IFP. R is (von Neumann) regular if for every a ∈ R, there exists
some b ∈ R such that a = aba. R is strongly regular if for every a ∈ R, there
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exists some b ∈ R such that a = a2b. It is well-known that a ring R is strongly
regular if and only if R is a reduced regular ring. Recall that a ring R is called
π-regular if for every x ∈ R, there exists a positive integer n, depending on
x, such that xn = xnyxn for some y ∈ R. Von Neumann regularity of rings
whose maximal right ideals are GP-injective has studied in [5, 11, 17, 22, 23,
etc.]. Chen and Ding [5] proved that a ring R is von Neumann regular if and
only if every proper principal right ideal of R is GP-injective if and only if every
essential right ideal of R is GP-injective. Subedi and Buhphang [17] proved
that R is a strongly regular ring if and only if R is reduced and every essential
maximal right(left) ideals are GP-injective if and only if R is left quasi-duo and
every essential maximal right ideal is GP-injective. Recently, Jeong and Kim[11]
proved that the following statements are equivalent:

(1) R is strongly regular;
(2) R is a 2-primal rings whose essential maximal right ideals are GP-injective;
(3) R is a right (or left) quasi-duo rings whose essential maximal right ideals

are GP-injective.

In this study, more advanced results were derived by using the new charac-
teristic of von Neumann regularity. Concretely, we prove the following details:
Let R be a ring in which essential maximal right ideals are GP-injective; The
following statements are equivalent;

(1) R is strongly regular;
(2) R is an NI ring ;
(3) R is a π-IFP ring;
(4) R is a semi-IFP I-rings ;
(5) maximal right ideals are GW-ideals.

2. Further study of rings in which essential maximal right ideals are
GP-injective

In this paper, we consider rings in which essential maximal right ideals are
GP-injective. For any nonempty subset S of R, r(S) and l(S) denote the right
annihilator and the left annihilator of S ∈ R, respectively.

We begin with the following notations and definitions.
Notation.
(1) P (R) : the prime radical
(2) J(R) : the Jacobson radical
(3) N ∗ (R) : the upper nilradical
(4) N(R) : the set of all nilpotent elements of R.
Note that P (R) ⊆ N ∗ (R) ⊆ N(R) ⊆ J(R).

Definition 2.1. (1) A ring R is called right(resp. left) quasi-duo[21] if every
maximal right(resp. left) ideal of R is two-sided ideal.

(2) A ring R is called weakly right(resp. left) duo[20] if for any a ∈ R, there
exists a positive integer n such that anR(resp. Ran) is two-sided ideal.
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(3) A ring R is called reduced if N(R) = 0.
(4) A ring R is called IFP if ab = 0 implies aRb = 0 for any a, b ∈ R.
(5) A ring R is called 2-primal [4] if P (R) = N(R).
(6) A ring R is called NI [13] if N∗(R) = N(R).
(7) A ring R (possibly without identity) is called π-IFP[7] if xmRyn = 0 for

some positive integers m, n whenever xy = 0 for x, y ∈ R.
(8) A ring R is called semi-IFP [18] if a2 = 0 for a ∈ R, implies aRa = 0.

Narbonne [15] called IFP rings semi-commutative. It is easily checked that
reduced rings are IFP rings and IFP rings are 2-primal.

Lemma 2.2 (11, Lemma 2). Let I be a right ideal a ring R and a ̸= 0 ∈ I.
If I is GP-injective, then there exists a positive integer n such that an ̸= 0 and
an = can for some c ∈ I.

Lemma 2.3 (11, Proposition 3). Suppose that every essential maximal right
ideal of R is GP-injective. Then;

(1) For a two-sided ideal I of R, if R/I is a reduced ring, then R/I is a
strongly regular ring.

(2) If R is right (or left) quasi-duo, then it is reduced.

Recall that a ring R is called 2-primal [4] if P (R) = N(R). Due to Marks [13],
a ring R is called NI ring if N∗(R) = N(R). Note that R is NI if N(R) forms
an ideal if and only if R/N(R) is reduced. It is well-known that 2-primal rings
are NI rings. Using Lemma 2.2 and Lemma 2.3, we obtain the following result
which extend known results [22, Theorem 5.1 and Proposition 7], [17, Theorem
2.5] and [11, Theorem 6].

Theorem 2.4. The following statements are equivalent;
(1) R is a strongly regular ring.
(2) R is an NI rings in which essential maximal right ideals are GP-injective.
(3) R is an NI rings in which essential maximal left ideals are GP-injective.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are clearly valid.
(2) ⇒ (1) : Assume that R is NI. Then R/N(R) is reduced ring. By Lemma

2.3, R/N(R) is strongly regular ring. Thus J(R/N(R)) = 0, we get J(R) ⊆
N(R), entailing J(R) = N(R). Hence R/J(R) is strongly regular ring. Suppose
that J(R) ̸= 0. Then there exists 0 ̸= b ∈ J(R) such that b2 = 0. We claim
that J(R) + l(b) = R for any b ∈ J(R). If not, then there exists b ∈ J(R)
such that J(R) + l(b) ̸= R. There exists a maximal right ideal K such that
J(R) + l(b) ⊆ K. First observe that K is an essential right ideal of R. If
not, then K is a direct summand of R. So we can write K = r(e) for some
0 ̸= e = e2 ∈ R. Since b ∈ K, eb = 0, and e ∈ l(b) ⊆ K = r(e); whence e = 0. It
is a contradiction. Thus M is right essential in R. Hence it is GP-injective and
b2 = 0. By Lemma 2.2, there exists c ∈ M such that b = cb; whence (1− c)b = 0
and 1 − c ∈ l(b) ⊆ K; which is a contradiction. Therefore, J(R) = 0, and so R
is a strongly regular ring.

(3) ⇒ (1) ; Similarly we can prove (2) ⇒ (1) □
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Corollary 2.5 (11, Theorem 6). For a ring R, The following statements are
equivalent;

(1) R is a strongly regular ring.
(2) R is a reduced rings whose essential maximal right ideals are GP-injective.
(3) R is a IFP rings whose essential maximal right ideals are GP-injective.
(4) R is a 2-primal rings whose essential maximal right ideals are GP-injective.

Recall that a ring R is called nil semi-commutative[14] if for any a, b ∈
N(R), ab = 0 implies aRb = 0. A ring R is called central IFP[1] if a, b ∈
R, ab = 0 implies aRb ∈ C(R). It is proved that R is a nil semi-commutative(or
central IFP) ring, then R is 2-primal by [14, Lemma 2.7] and [1, Theorem 2.8].
A left ideal L of R is called an N-ideal if for every b ∈ N(R)∩L, implies bR ⊆ L.
A ring R is NZI[19] if for any a ∈ R, l(a) is an N-ideal of R. Wei proved that
IFP rings are NZI and NZI rings are NI [19, Corollary 2.3].

Corollary 2.6. The following statements are equivalent;
(1) R is a strongly regular ring.
(2) R is a nil semi-commutative rings whose essential maximal right(or left)

ideals are GP-injective.
(3) R is a central IFP rings whose essential maximal right( or left) ideals are

GP-injective.
(4) R is a NZI rings whose essential maximal right(or left) ideals are GP-

injective.

Recall that a ring R (possibly without identity) is called π-IFP[7] if xmRyn =
0 for some positive integers m, n whenever xy = 0 for x, y ∈ R. A ring R is an
abelian if each idempotent is central. It is proved that any π-IFP ring is abelian
by [7, Lemma 1.8(1)].

In the following we get the same result as theorem 2.4 with the π-IFP ring in
place of the NI ring. Clearly, strongly regular rings are reduced (hence π-IFP).

Theorem 2.7. The following statements are equivalent ;
(1) R is a strongly regular ring.
(2) R is a π-IFP rings in which essential maximal left ideals are GP-injective.
(3) R is a π-IFP rings in which essential maximal right ideals are GP-

injective.

Proof. Clearly (1) ⇒ (2) and (1) ⇒ (3).
(2) ⇒ (1); Let 0 ̸= b ∈ R such that b2 = 0. We claim that Rb+ r(bR) = R. If

not, there exists a maximal left ideal K such that Rb+r(bR) ⊆ K. First observe
that K is an essential left ideal of R. If not, then K is a direct summand of R.
So we can write K = l(e) for some 0 ̸= e = e2 ∈ R. Since b ∈ K = l(e), be = 0.
By hypothesis R is a π-IFP ring and b2 = 0, there exists a positive integer n such
that bRen = 0. Thus bRe = 0 and e ∈ r(bR) ⊆ K = l(e); whence e = 0. It is a
contradiction. Therefore K is an essential left ideal of R. Thus K is an essential
maximal left ideal. By hypothesis K is GP-injective, there exists c ∈ K such
that b = bc by Lemma 2.2. Thus, b(1− c) = 0. By hypothesis, R is a π-IFP ring
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and b2 = 0, there exists a positive integer n such that bR(1− c)
n
= 0. Thus,

(1− c)
n ⊆ r(bR) ⊆ K. It is a contradiction. Hence, Rb + r(bR) = R. Thus,

there exist r ∈ R and y ∈ r(bR) such that rb + y = 1. Therefore brb = b and
b(rb− 1) = 0. Since R is a π-IFP ring and b2 = 0, there exists a positive integer
n such that bR(rb − 1)n = 0. Thus br(rb − 1)n = 0. In case n = 2k for any
positive integer k, br(rb− 1)

n
= br(1− rb) = 0, since brb = b and so br = brrb.

In case n = 2k− 1 for any positive integer k, br(rb− 1)
n
= br(rb− 1) = 0, since

brb = b and so br = brrb. Thus b = brb = (brrb)b = 0. It is a contradiction.
Hence b = 0 and so R is reduced. Therefore R is a strongly regular by Corollary
2.5.

(3) ⇒ (1); Similarly we can prove (2) ⇒ (1) □

Köthe [12], a ring is called an I-ring if each non-nil left (right) ideal contains
a nonzero idempotent. Algebraic algebra and π-regular rings are I-rings by [10,
Proposition 9.4.1]. It is easy to check that Jacobson radicals of I-rings are nil.
Recall that a ring R is called semi-IFP[18] if a2 = 0 for a ∈ R, implies aRa = 0.

Notation: We write N1(R) = {a ∈ R : a2 = 0}.
Lemma 2.8. If R is a semi-IFP ring, then N1(R) ⊆ P (R).

Proof. For any a ∈ N1(R) such that a2 = 0. Since R is semi-IFP, aRa = 0 ∈
P (R). Hence a ∈ P (R). Therefore N1(R) ⊆ P (R). □

Lemma 2.9 (9, Theorem 2). Let R be a ring such that R/J(R) is an I-ring
and suppose that idempotents lift modulo J(R). If J(R) contains N1(R), then
R/J(R) is reduced ring.

Proposition 2.10. If R is a semi-IFP I-ring, then R/J(R) is reduced ring.

Proof. Since R is semi-IFP, then N1(R) ⊆ P (R) ⊆ J(R). The Jacobson radical
J(R) of the I-ring R is a nil ideal and the ring R/J(R) also is an I-ring. By
lemma 2.9, R/J(R) is reduced ring. □

Lemma 2.11 (11, Theorem 7). . For a ring R, The following statements are
equivalent; (1) R is a strongly regular ring. (2) R is a weakly right duo rings
whose essential maximal right ideals are GP-injective. (3) R is a right quasi-duo
rings whose essential maximal left ideals are GP-injective.

By the product of proposition 2.10 and lemma 2.3, we have the following
results.

Theorem 2.12. The following statements are equivalent;
(1) R is a strongly regular ring.
(2) R is a semi-IFP I-rings in which essential maximal right ideals are GP-

injective.

Proof. Clearly (1) ⇒ (2). (2) ⇒ (1); Assume that R is a semi-IFP I-ring. By
Proposition 2.10, R/J(R) is reduced. Also by lemma 2.3, R/J(R) is strongly
regular ring. Thus R/J(R) is right quasi-duo, hence R is right quasi-duo. By
lemma 2.11, R is a strongly regular ring. □
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Since π-regular rings are I-ring, the following corollary follows.

Corollary 2.13. The following statements are equivalent;
(1) R is a strongly regular ring.
(2) R is a semi-IFP π-regular rings in which essential maximal right ideals

are GP-injective.

Following [24], a left ideal L of a ring R is called a weakly ideal (simply, W -
ideal) if for any 0 ̸= a ∈ L there exists a positive integer n such that an ̸= 0
and anR ⊆ L. A right ideal K of a ring R is defined similarly to be a weakly
ideal. A left ideal L of a ring R is a generalized weak ideal (GW-ideal) if for all
a ∈ L, there exists a positive integer n such that anR ⊆ L. A right ideal K of
R is defined similarly to be a GW-ideal. Clearly, W-ideals are GW-ideals.

Lemma 2.14 (16, Lemma 2.1). Let R be a ring whose maximal right(or left)
ideals are GW-ideals, then R/J(R) is reduced.

The following result is the extension of [11, Theorem 7] and [17, Theorem
2.15].

Theorem 2.15. The following statements are equivalent;
(1) R is a strongly regular ring.
(2) R is a ring in which maximal right(or left) ideals are W-ideals and essen-

tial maximal right ideals are GP-injective.
(3) R is a ring in which maximal right(or left) ideals are GW-ideals and

essential maximal right ideals are GP-injective.

Proof. It is obtained in a similar way to theorem 2.4. □

Corollary 2.16. The following statements are equivalent;
(1) R is a strongly regular ring.
(2) R is a right(or left) quasi-duo rings in which essential maximal right ideals

are GP-injective.
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