ON WEAK ARMENDARIZ IDEALS

EBRAHIM HASHEMI

ABSTRACT. We introduce weak Armendariz ideals which are a generalization of ideals have the weakly insertion of factors property (or simply weakly IFP) and investigate their properties. Moreover, we prove that, if I is a weak Armendariz ideal of R, then I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is a weak Armendariz ring. Also we obtain a generalization of [8] and [9].

1. Introduction

Throughout this paper R denotes an associative ring with identity. A ring R is called *semicommutative* if for any $a, b \in R$, ab = 0 implies aRb = 0. Rege and Chhawchharia [11] introduced the notion of an Armendariz ring. A ring R is called Armendariz if whenever polynomials $f(x) = a_0 + a_1 x + \cdots + a_n x^n$, $g(x) = b_0 + b_1 x + \cdots + b_m x^m \in R[x]$ satisfy f(x)g(x) = 0, then $a_i b_i = 0$ for each i, j. The name "Armendariz ring" was chosen because Armendariz [2, Lemma 1] had noted that a reduced ring (i.e., $a^2 = 0$ implies a = 0) satisfies this condition. Some properties of Armendariz rings have been studied in Rege and Chhawchharia [11], Armendariz [2], Anderson and Camillo [1], and Kim and Lee [6]. Zhongkui Liu and Renyu Zhao [9] studied a generalization of Armendariz rings, which is called weak Armendariz rings. A ring R is called weak Armendariz if whenever $f(x) = a_0 + a_1x + \cdots + a_nx^n, g(x) =$ $b_0 + b_1 x + \cdots + b_m x^m \in R[x]$, with $a_i, b_j \in R$ satisfy f(x)g(x) = 0, then $a_i b_j$ is a nilpotent element of R for each i, j. They have shown that, if R is a semicommutative ring, then the ring R[x] and the ring $\frac{R[x]}{(x^n)}$, where (x^n) is the ideal generated by x^n , and n is a positive integer, are weak Armendariz. They also give the following question: Let R be a weak Armendariz. Is R[x] weak Armendariz?

We call an ideal I weak Armendariz, if whenever $f(x) = a_0 + a_1 x + \cdots + a_n x^n$, $g(x) = b_0 + b_1 x + \cdots + b_m x^m \in R[x]$, satisfy $f(x)g(x) \in I[x]$, then for each i, j,

Received February 16, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16S50.

Key words and phrases. Armendariz rings, weak Armendariz rings, semicommutative rings, weakly semicommutative rings.

there exists a positive integer n_{ij} such that $(a_ib_j)^{n_{ij}} \in I$. Clearly if ideal I = 0 is weak Armendariz, then R is a weak Armendariz ring.

Recall from [10] that a one-sided ideal I of a ring R has the insertion of factors property (or simply, IFP) if $ab \in I$ implies $aRb \subseteq I$ for $a,b \in R$. (H. E. Bell in 1973 introduced this notion for I=0). Observe that every completely semiprime ideal (i.e., $a^2 \in I$ implies $a \in I$) of R has the IFP [10, Lemma 3.2(a)]. If I=0 has the IFP, then we say R has the IFP (or R is semicommutative). Li Liang et al. [8] introduced weakly semicommutative rings. A ring R is called weakly semicommutative, if for any $a,b \in R$, ab=0 implies arb is a nilpotent element for each $r \in R$.

We say a one-sided ideal I of R has the weakly IFP if for each $a, b, r \in R$, $ab \in I$ implies $(arb)^n \in I$ for some non-negative integer n. Clearly, if ideal I = 0 has the weakly IFP, then R is a weakly semicommutative ring.

In this paper we show that if an ideal I has the weakly IFP, then I is weak Armendariz, thus weak Armendariz ideals are a generalization of ideals which has the weakly IFP. Also, for any positive integer n, we study relationship between ideals of R which are weak Armendariz with some ideals of the ring

$$R_n(R) = \left\{ egin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \; ext{for all} \, i, j
ight\},$$

the *n*-by-*n* upper triangular matrix ring over R and the ring $\frac{R[x]}{(x^n)}$, where (x^n) is the ideal generated by x^n . As a consequence, if R is weak Armendariz, then for any positive integer n, the *n*-by-*n* upper triangular matrix ring, the ring $\frac{R[x]}{(x^n)}$ and the ring $R_n(R)$ are weak Armendariz. Also we show that, if I is an ideal of R, then I is weak Armendariz if and only if I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is weak Armendariz, thus we give an affirmative answer to a question of Liu et al. [9, p. 2614].

For a ring R, we denote by nil(R) the set of all nilpotent elements of R and by $T_n(R)$ the n-by-n upper triangular matrix ring over R.

2. On weak Armendariz ideals

For an ideal I of R put

$$\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some non-negative integer } n \ge 0\}.$$

Definition 2.1. An ideal I of a ring R is said to be weak Armendariz if whenever polynomials $f(x) = a_0 + a_1x + \cdots + a_mx^m$, $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$ satisfy $f(x)g(x) \in I[x]$, then $a_ib_j \in \sqrt{I}$ for all i,j.

Clearly, if I = 0 is weak Armendariz, then R is a weak Armendariz ring.

It is well-known that for a ring R and any positive integer $n \geq 2$,

$$\frac{R[x]}{(x^n)} \cong \left\{ \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ 0 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{pmatrix} \mid a_i \in R, \ i = 0, 1, \dots, n-1 \right\},\,$$

where (x^n) is the ideal of R[x] generated by x^n .

Lemma 2.2. Let R be a ring and $n \ge 2$ a positive integer. Let $I_0, I_1, \ldots, I_{n-1}$ are ideals of R, such that $I_i \subseteq I_{i+1}$, $i = 0, 1, \ldots, n-2$. Then

$$J = \left\{ \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ 0 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{pmatrix} \mid a_i \in I_i, \ i = 0, 1, \dots, n \right\}$$

is an ideal of $\frac{R[x]}{(x^n)}$.

Proof. It is straightforward.

In Propositions 2.3, 2.6, and Theorem 2.4, I_0 and J are ideals that mentioned in Lemma 2.2.

Proposition 2.3. Let

$$A = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ 0 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{pmatrix} \in \frac{R[x]}{(x^n)},$$

such that $a_0^k \in I_0$ for some integer k. Then $A^{nk} \in J$.

Proof. We proceed by induction on n. Let n=2. For a positive integer k, $A^k = \begin{pmatrix} a^k & b_1 \\ 0 & a^k \end{pmatrix}$ and that $A^{2k} = \begin{pmatrix} a_0^{2k} & a_0^k b_1 + b_1 a_0^k \\ 0 & a_0^{2k} \end{pmatrix}$. Hence $A^{2k} \in J$, since $a_0^{2k}, a_0^k b_1 + b_1 a_0^k \in I_0$. Now, let

$$A = \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ 0 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{pmatrix} \in \frac{R[x]}{(x^n)}$$

such that $a_0^k \in I_0$ for some integer k. Consider

$$A^{k} = \begin{pmatrix} a_{0}^{k} & c_{1} & \cdots & c_{n-1} \\ 0 & a_{0}^{k} & \cdots & c_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{0}^{k} \end{pmatrix} \quad \text{and} \quad A^{(n-1)k} = \begin{pmatrix} a_{0}^{(n-1)k} & b_{1} & \cdots & b_{n-1} \\ 0 & a_{0}^{(n-1)k} & \cdots & b_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{0}^{(n-1)k} \end{pmatrix}.$$

By the induction hypothesis all b_i 's, except b_{n-1} , are in I_0 . Let $x = a_0^k b_1 + c_1 b_{n-2} + \cdots + c_{n-1} a_0^{(n-1)k}$. Hence

$$A^{nk} = \begin{pmatrix} a_0^{nk} & y_1 & \cdots & x \\ 0 & a_0^{nk} & \cdots & y_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0^{nk} \end{pmatrix} \in J,$$

since a_0^{nk} , x and all y_i 's are in I_0 .

Theorem 2.4. I_0 is weak Armendariz, if and only if J is weak Armendariz.

Proof. (\Rightarrow) Let $f(y) = A_0 + A_1 y + \cdots + A_m y^m$, $g(y) = B_0 + B_1 y + \cdots + B_t y^t \in \frac{R[x]}{(x^n)}[y]$, such that $f(y)g(y) \in J[y]$. Let

$$A_i = egin{pmatrix} a_{0i} & a_{1i} & \cdots & a_{n-1i} \ 0 & a_{0i} & \cdots & a_{n-2i} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a_{0i} \end{pmatrix}, \quad B_j = egin{pmatrix} b_{0j} & b_{1j} & \cdots & b_{n-1j} \ 0 & b_{0j} & \cdots & b_{n-2j} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & b_{0j} \end{pmatrix}$$

for $i=0,1,\ldots,m,\ j=0,1,\ldots,t$. Let $f_0=a_{00}+a_{01}y+\cdots+a_{0m}y^m$ and $g_0=b_{00}+b_{01}y+\cdots+b_{0t}y^t$. Then $f_0g_0\in I_0[y]$. Since I_0 is weak Armendariz, there exists k>0, such that $(a_{0i}b_{0j})^k\in I_0$ for each i,j. Then $(A_iB_j)^{nk}\in J$ for all i,j, by Proposition 2.3. Therefore J is weak Armendariz.

$$(\Leftarrow)$$
 It is clear.

Li Liang et al. [8, Theorem 3.9] showed that, if R is a semicommutative ring, then the ring $\frac{R[x]}{(x^n)}$, for each positive integer n, is weak Armendariz. The following result is a generalization of Li Liang et al.'s result.

Corollary 2.5. Let R be a ring. Then R is weak Armendariz if and only if the ring $\frac{R[x]}{(x^n)}$, for each positive integer n, is weak Armendariz.

Proposition 2.6. I_0 has the weakly IFP if and only if J has the weakly IFP.

Clearly, if an ideal I has the IFP, then it has the weakly IFP. By the following example, we show that the converse is not true.

Example 2.7. Let

$$J = \left\{ egin{pmatrix} 0 & a_1 & a_2 & a_3 \ 0 & 0 & a_1 & a_2 \ 0 & 0 & 0 & a_1 \ 0 & 0 & 0 & 0 \end{pmatrix} \mid a_i \in 2p\mathbb{Z}
ight\}$$

be an ideal of $\frac{\mathbb{Z}[x]}{(x^4)}$ where $2 \neq p$ is a prime number and \mathbb{Z} is the set of integers. Then

$$\begin{pmatrix} 0 & p & 1 & 0 \\ 0 & 0 & p & 1 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & p & 1 & 0 \\ 0 & 0 & p & 1 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2p & 2p \\ 0 & 0 & 0 & 2p \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in J,$$

but

Hence J has not the IFP, but J has the weakly IFP, by Proposition 2.5.

By a similar way as used in Example 2.7, we can construct numerous ideals of $\frac{\mathbb{Z}[x]}{(x^n)}$ such that have the weakly IFP, but have't the IFP for $n \geq 2$.

Theorem 2.8. Let I be an ideal of R. Then I is weak Armendariz if and only if I[x] is weak Armendariz.

Proof. (\$\Rightarrow\$) Let $f(y) = f_0 + f_1 y + \dots + f_m y^m$, $g(y) = g_0 + g_1 y + \dots + g_t y^t \in R[x][y]$ are such that $f(y)g(y) \in I[x][y]$. Let $n = \max\{\deg(f_i), \deg(g_j)|i = 0, 1, \dots, m, j = 0, 1, \dots, t\}$. Then we can assume $f_i = a_{i0} + a_{i1}x + \dots + a_{in}x^n$, $g_j = b_{j0} + b_{j1}x + \dots + b_{jn}x^n$ for $i = 0, 1, \dots, m$ and $j = 0, 1, \dots, t$. Let

$$J = \left\{ egin{pmatrix} a_0 & a_1 & \cdots & a_n \\ 0 & a_0 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{pmatrix} \mid a_i \in I, \ i = 0, 1, \dots, n
ight\}.$$

By Lemma 2.2, J is an ideal of $\frac{R[x]}{(x^{n+1})}$. Let

$$A_i = egin{pmatrix} a_{i0} & a_{i1} & \cdots & a_{in} \ 0 & a_{i0} & \cdots & a_{in-1} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a_{i0} \end{pmatrix}, \quad B_j = egin{pmatrix} b_{j0} & b_{j1} & \cdots & b_{jn} \ 0 & b_{j0} & \cdots & b_{jn-1} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & b_{j0} \end{pmatrix}$$

for $i=0,1,\ldots,m$ and $j=0,1,\ldots,t$. Since $f(y)g(y)\in I[x][y]$, we have $(A_0+A_1y+\cdots+A_my^m)(B_0+B_1y+\cdots+B_ty^t)\in J[y]$. By Theorem 2.4, J is weak Armendariz. Hence there exists k>0 such that $(A_iB_j)^k\in J$ for each i,j. Thus $(f_ig_j)^k\in I[x]$ for each i,j. Therefore I[x] is weak Armendariz.

$$(\Leftarrow)$$
 It is clear.

Now we give an affirmative answer to a question of Liu et al. [9, p. 2614].

Corollary 2.9. Let R be a ring. Then R is weak Armendariz if and only if R[x] is weak Armendariz.

Lemma 2.10. Let I be an ideal of R and has the IFP. Then \sqrt{I} is an ideal of R and has the IFP.

Proof. Let $a,b \in \sqrt{I}$. Then $a^n,b^m \in I$ for some integer $m,n \geq 0$. Hence $(a+b)^{m+n+1} = \sum (a^{i_1}b^{j_1})\cdots (a^{i_{m+n+1}}b^{j_{m+n+1}})$, where $i_k+j_k=1,0\leq i_k\leq 1$, $0\leq j_k\leq 1$. It can be easily checked that a more that n or b more that m appear in $(a^{i_1}b^{j_1})\cdots (a^{i_{m+n+1}}b^{j_{m+n+1}})$. Since $a^n,b^m\in I$ and I has the IFP, we have $(a^{i_1}b^{j_1})\cdots (a^{i_{m+n+1}}b^{j_{m+n+1}})\in I$. Therefore $(a+b)^{m+n+1}\in I$ and $a+b\in \sqrt{I}$.

Now suppose that $a^m \in I$ and $r \in R$. Then $(ra)^m$, $(ar)^n \in I$, since I has the IFP. Thus \sqrt{I} is an ideal of R. Clearly \sqrt{I} has the IFP.

Proposition 2.11. Let I be an ideal of R and has the IFP. Then I and \sqrt{I} are weak Armendariz.

Proof. Let $f(x)=\sum_{i=0}^m a_ix^i,\ g(x)=\sum_{j=0}^t b_jx^j\in R[x]$ such that $f(x)g(x)\in I[x]$. Then $a_mb_t\in I$. Since $a_mb_{t-1}+a_{m-1}b_t\in I\subseteq \sqrt{I}$, we have $a_mb_{t-1}b_t+a_{m-1}b_t^2\in I$. Hence $a_{m-1}b_t^2\in I$, since $a_mb_{t-1}b_n\in I$. Thus $a_{m-1}b_t\in \sqrt{I}$, by Lemma 2.10. Since \sqrt{I} is an ideal of R, hence $a_mb_{t-1}\in \sqrt{I}$. Coefficient of x^{m+t-2} in f(x)g(x) is $a_mb_{t-2}+a_{m-1}b_{t-1}+a_{m-2}b_t$. Then $a_mb_{t-2}+a_{m-1}b_{t-1}+a_{m-2}b_t\in I$, and so $a_mb_{t-2}b_t+a_{m-1}b_{t-1}b_t+a_{m-2}b_t^2\in \sqrt{I}$. Since $a_mb_{t-2}b_t,a_{m-1}b_{t-1}b_t\in \sqrt{I}$, hence $a_{m-2}b_t^2\in \sqrt{I}$, and by Lemma 2.10, $a_{m-2}b_t\in \sqrt{I}$. By a similar way as above, we can show that $a_{m-1}b_{t-1},a_mb_{t-2}\in \sqrt{I}$. Continuing this process, we can prove $a_ib_j\in \sqrt{I}$ for each i,j. Therefore I is weak Armendariz.

Since I has the IFP, hence by Lemma 2.10, \sqrt{I} is an ideal of R and has the IFP. Thus \sqrt{I} is weak Armendariz.

Corollary 2.12 ([9, Corollary 3.4]). Semicommutative rings are weak Armendariz.

Lemma 2.13. Let I, I_{ij} are ideals of R such that $I \subseteq I_{ij} \subseteq I_{is}$ for $1 \le i < j \le s \le n$, and $I_{pq} \subseteq I_{\ell q}$ for q = 3, ..., n, $2 \le \ell \le p \le n$. Then

$$J = \left\{ \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \mid a \in I, \ a_{ij} \in I_{ij} \right\}$$

is an ideal of $R_n(R)$.

Proof. It is straightforward.

In Propositions 2.14, 2.17, and Theorem 2.15, I and J are ideals that mentioned in Lemma 2.13.

Proposition 2.14. Let

$$A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in R_n(R)$$

such that $a^k \in I$ for some integer k. Then $A^{nk} \in J$.

Proof. We proceed by induction on n. Let n=2. For a positive integer k, $A^k=\begin{pmatrix} a^k & b_{12} \\ 0 & a^k \end{pmatrix}$ and that $A^{2k}=\begin{pmatrix} a^{2k} & a^k b_{12}+b_{12}a^k \\ 0 & a^{2k} \end{pmatrix}$. Hence $A^{2k}\in J$, since a^{2k} , $a^k b_{12}+b_{12}a^k\in I$. Now, let

$$A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in R_n(R)$$

such that $a^k \in I$ for some integer k. Consider

$$A^{k} = \begin{pmatrix} a^{k} & c_{12} & \cdots & c_{1n} \\ 0 & a^{k} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{k} \end{pmatrix} \quad \text{and} \quad A^{(n-1)k} = \begin{pmatrix} a^{(n-1)k} & b_{12} & \cdots & b_{1n} \\ 0 & a^{(n-1)k} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{(n-1)k} \end{pmatrix}.$$

By the induction hypothesis all b_{ij} 's, except b_{1n} , are in I. Let $x = a^k b_{1n} + c_{12}b_{2n} + \cdots + c_{1n}a^{(n-1)k}$. Hence

$$A^{nk} = \begin{pmatrix} a^{nk} & y_{12} & \cdots & x \\ 0 & a^{nk} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{nk} \end{pmatrix} \in J,$$

since a^{nk} , x and all y_{ij} 's are in I.

Theorem 2.15. I is weak Armendariz if and only if J is weak Armendariz.

Proof. (\Rightarrow) Let $f(x) = A_0 + A_1x + \cdots + A_mx^m$, $g(x) = B_0 + B_1x + \cdots + B_tx^t \in R_n(R)$, such that $f(x)g(x) \in J[x]$. Let

$$A_i = egin{pmatrix} a^i & a^i_{12} & \cdots & a^i_{1n} \ 0 & a^i & \cdots & a^i_{2n} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a^i \end{pmatrix}$$

for i = 0, 1, ..., m and

$$B_{j} = \begin{pmatrix} b^{j} & b_{12}^{j} & \cdots & b_{1n}^{j} \\ 0 & b^{j} & \cdots & b_{2n}^{j} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b^{j} \end{pmatrix}$$

for $j=0,1,\ldots,t$. Let $f_0=a^0+a^1x+\cdots+a^mx^m$ and $g_0=b^0+b^1x+\cdots+b^tx^t$. Then $f_0g_0\in I[x]$. Since I is weak Armendariz, there exists k>0 such that $(a^ib^j)^k\in I$ for each i,j. Then $(A_iB_j)^{nk}\in J$ for all i,j, by Proposition 2.14. Therefore J is weak Armendariz.

$$(\Leftarrow)$$
 It is clear.

Corollary 2.16 ([9, Example 2.4]). A ring R is weak Armendariz if and only if, for any positive integer n, $R_n(R)$ is weak Armendariz.

Proof. It follows from Theorem 2.15.

Proposition 2.17. I has the weakly IFP if and only if J has the weakly IFP.

Proof. It follows from Proposition 2.14.

Corollary 2.18. A ring R is weakly semicommutative if and only if, for any positive integer n, the ring $R_n(R)$ is a weakly semicommutative ring.

Clearly, if an ideal I has the IFP, then it has the weakly IFP. The following is an another example to show that the converse is not true.

Example 2.19. Let

$$J = \left\{ \begin{pmatrix} 0 & a_{12} & a_{13} & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & 0 & 0 & a_{34} \\ 0 & 0 & 0 & 0 \end{pmatrix} \mid a_{ij} \in 2p\mathbb{Z} \right\}$$

be an ideal of $R_4(\mathbb{Z})$ where $2 \neq p$ is a prime number and \mathbb{Z} is the set of integers. Then

but

Hence J has not the IFP, but J has the weakly IFP, by Proposition 2.17.

By a similar way as used in Example 2.19, we can construct numerous ideals of $R_n(R)$ such that have the weakly IFP, but haven't the IFP for each $n \geq 2$.

Proposition 2.20. Let R be a ring and I, J be ideals of R. If $I \subseteq \sqrt{J}$ and $\frac{I+J}{I}$ is weak Armendariz, then J is weak Armendariz.

Proof. Let $f(x) = \sum_{i=0}^m a_i x^i$, $g(x) = \sum_{j=0}^t b_j x^j \in R[x]$ such that $f(x)g(x) \in J[x]$. Then $(\sum_{i=0}^m \overline{a}_i x^i)(\sum_{j=0}^t \overline{b}_j x^j) \in \frac{I+J}{I}[x]$. Thus $(\overline{a}_i \overline{b}_j)^{n_{ij}} \in \frac{I+J}{I}$ for some positive integer n_{ij} . Hence $(a_i b_j)^{n_{ij}} \in I+J$, and so $(a_i b_j)^{n_{ij}} \in J$, since $I \subseteq \sqrt{J}$. Therefore J is weak Armendariz.

Corollary 2.21 ([9, Proposition 2.9]). Let R be a ring and I an ideal of R such that $\frac{R}{I}$ is weak Armendariz. If $I \subseteq nil(R)$, then R is weak Armendariz.

Lemma 2.22. Let I_{ij} be ideals of R such that $I_{ij} \subseteq I_{is}$ for $1 \le i \le j \le s \le n$ and $I_{pq} \subseteq I_{\ell q}$ for $q = 2, ..., n, 1 \le \ell \le p \le n$. Then

$$J = \left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \mid a_{ij} \in I_{ij}, \ 1 \le i, j \le n \right\}$$

is an ideal of $T_n(R)$.

Proof. It is straightforward.

In Propositions 2.23, 2.26, and Theorem 2.24, I_{ij} 's are ideals that mentioned in Lemma 2.22. By a similar way as used in the proof of Proposition 2.3 and Theorem 2.4, one can prove Proposition 2.23 and Theorem 2.24.

Proposition 2.23. Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in T_n(R)$$

such that $a_{ii}^k \in I_{ii}$ for some positive integer k and i = 1, ..., n. Then $(A^{2k+1})^{n-1} \in J$.

Theorem 2.24. I is weak Armendariz if and only if all I_{ii} are weak Armendariz for i = 1, ..., n.

Corollary 2.25 ([9, Proposition 2.2]). A ring R is weak Armendariz if and only if $T_n(R)$, for any positive integer n, is weak Armendariz.

Proposition 2.26. *J* has the weakly IFP if and only if all I_{ii} has the weakly IFP for i = 1, ..., n.

Proof. It follows from Proposition 2.23.

Corollary 2.27 ([8, Claim 2.1]). A ring R is a weakly semicommutative ring if and only if, for any n, the n-by-n upper triangular matrix ring $T_n(R)$ is a weakly semicommutative ring.

Acknowledgement. The author thank the referee for his/her helpful suggestions. This research is supported by the Shahrood University of Technology of Iran.

References

- D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265–2272.
- [2] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
- [3] C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122.
- [4] C. Huh, H. K. Kim, and Y. Lee, P.P.-rings and generalized P.P.-rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52.
- [5] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
- [6] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477–488.
- [7] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583–593.
- [8] L. Liang, L. Wang, and Z. Liu, On a generalization of semicommutative rings, Taiwanese J. Math. 11 (2007), no. 5, 1359-1368.
- [9] Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607–2616.
- [10] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724.
- [11] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.

DEPARTMENT OF MATHEMATICS

SHAHROOD UNIVERSITY OF TECHNOLOGY

SHAHROOD, IRAN, P.O.Box: 316-3619995161

E-mail address: eb_hashemi@yahoo.com or eb_hashemi@shahroodut.ac.ir