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IFP RINGS AND NEAR-IFP RINGS

KyYuNG-YUEN HaM, YOouNG (C"HEOL JEON, JINWOO KANG, NAM KYUN KIM,
WoniaE LEE, YANG LEE. Suxa Ju Ryu, AND HAE-HUN YANG

ABSTRACT. A ring R is called IFP, due to Bell, if ab = 0 implies aRb = 0
for a,b € R. Huh et al. showed that the IFP condition need not be
preserved by polynomial ring extensions. But it is shown that >°" | Fa; E
is a nonzero nilpotent ideal of £ whenever Risan I[FP ringand 0 # f € F
is nilpotent, where £ is a polynomial ring over R, F is a polynomial ring
over E, and a;’s are the coefficients of f. We shall use the term near-
IFP to denote such a ring as having place near at the IFPness. In the
present note the structures of 1FP rings and near-1FP rings are observed,
extending the classes of them. IFP rings are NI (i.e., nilpotent elements
form an ideal). It is shown that the near-IFPness and the Nlness are
distinct each other, and the relations among them and related conditions
are examined.

1. Near-IFP rings

Throughout every ring is associative with identity unless otherwise stated.
X denotes a nonempty set of commuting indeterminates over rings. Let R be
a ring. The polynomial ring over R with X is denoted by R[X], and if X
is a singleton, say X = {z}, then we write R[z] in place of R[{z}]. Every
polynomial in R[X] is written by ag+_7_, a; X’ with X> a finite product of
indeterminates over R, according to the notations in the proof of [10, Theorem
1.1]. The n by n matrix ring over a ring R is denoted by Mat,(R), and Ej;
denotes the n by n matrix with (i, j)-entry 1 and zero elsewhere. The n by n
upper and lower triangular matrix rings over R are denoted by UTM,,(R) and
LTM,, (R), respectively.

An element a of a ring is called nilpotent if a™ = 0 for some positive integer
m. A subset S of a ring is called nilpotent if S™ = 0 for some positive integer n.
A subset T of a ring is called nil if each element of T is nilpotent. Given a ring
R, N*(R) and N(R) denote the nilradical (i.e., the sum of all nil ideals) of R
and the set of all nilpotent elements in R, respectively. Note N*(R) C N(R).
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rr(—) (resp. £r(—)) is used for the right (resp. left) annihilator in a ring
R. a € R is said to be right (resp. left) regular if rg(a) = 0 (resp. £r(a) = 0).
a € R is called a left (resp. right) zero-divisor if rg(a) # 0 (resp. £r(a) #0). A
zero-divisor means an element that is neither right nor left regular. A domain
means a ring whose nonzero elements are two-sided regular.

A ring R is called reduced if N(R) = 0. Marks [15] called a ring R NI when
N*(R) = N(R) (equivalently, N(R) forms an ideal in R). Reduced rings are
clearly NI and it is obvious that a ring R is NI if and only if R/N*(R) is
reduced. A prime ideal P of a ring R is called completely prime if R/P is a
domain. Hong et al. showed that a ring R is NI if and only if every minimal
strongly prime ideal of R is completely prime [8, Corollary 13].

A well-known property between “commutative” and “NI” is the insertion-
of-factors-property (simply IFP) due to Bell [1]; a right (or left) ideal I of a
ring R is said to have the IFP if ab € I implies aRb C I for a,b € R. So a ring
R is called IFP if the zero ideal of R has the IFP. Shin [17] used the term SI
for the IFP; while IFP rings are also known as semicommutative in Narbonne’s
paper [16]. IFP rings are NI by [17, Theorem 1.5], and reduced rings are IFP
by a simple computation. A ring is called abelian if each idempotent is central.
IFP rings are abelian by a simple computation.

Huh et al. showed that the IFP condition need not be preserved by polyno-
mial ring extensions [11, Example 2]. But IFP rings have the following useful
facts.

Lemma 1.1. (1) A ring R is IFP if and only if rr(S) is an ideal of R for any
S C R if and only if £r(S) is an ideal of R for any S C R.

(2) IFP rings are NL

(3) If R is an NI ring and ag + 2?21 a; X' € N(R[X]) then 2?:0 Ra; R is
nal.

(4) Let R be an IFP ring. Then > 7, Ra;R is nilpotent whenever ap +

Z?:l a; X1 € R[X] is nilpotent.

Proof. (1) and (2) are proved by [17, Lemma 1.2] and [17, Theorem 1.5], re-
spectively.

(3) Let R be an NI ring and ag + ), ;X" € N(R[X]). Then R/N*(R)
is reduced with N*(R) = N(R) by the definition, and so from

R[X] R
N*(R)[X] ~ N*(R)

1%

[X]

we have N(R[X]) C N*(R)[X], entailing a; € N*(R) for all j. Then }_ Ra;R
3=0
is nil since N*(R) is an ideal of R.
(4) Let Rbe an IFP ringand ap+3_ ., a; X5 € N(R[X]). Then by (2, 3) all

a;’s are in N(R). Say a?j = 0 for some positive integer k;, then (Ra;R)* =0
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since K is IFP. Thus we obtain

(Zn: Ra;R)* =0 with k = i k;.
j=0

j=0

L]

Here we consider the following condition that is weaker than the result in
Lemma 1.1(4): (%) >._, Ra; R contains a nonzero nilpotent ideal whenever a
nonzero polynomial Y ., a;z' over a ring R is nilpotent. Then the condition
(x) is placed near at the IFPness by Lemma 1.1(4); hence we call a ring near-
IFP if it satisfies the condition (x). However the near-IFPness is distinct from
the NIness as we see below. IFP rings are near-IFP by Lemma 1.1(4).

Proposition 1.2. For a ring R the following conditions are equivalent:
(1) R is near-IFP;
(2) RaR contains a nonzero nilpotent ideal of R for any 0 # a € N(R);
(3) Z?_—_o Ra; R contains a nonzero nilpotent ideal of R whenever 0 # ag +

Z?:l anIj € R[X] is nilpotent.

Proof. It suffices to obtain (3) from (2). Let 0 # f(X) = a¢ + E?zl a; X1 €
N(R[X]) with I; < I;4,; for all j > 1. Without loss of generality, we can put
a; # 0 when ag = 0. Then by the proof of [10, Theorem 1.1}, we get ag € N(R)
(when ag # 0) or a; € N(R) (when ay = 0). By the condition (2), there
exists a nonzero nilpotent ideal of R contained in Z;lf:o RarR C Y _, RaxR,
completing the proof. [

We will use Proposition 1.2 freely. In the following we confirm that there
are no containing relations between the classes of near-IFP rings and NI rings,
and that NI rings and near-IFP rings need not be IFP.

Example 1.3. (1) Let R = UTM,(S) over a reduced ring S. Note that
N*(R) = (85) = N(R) (hence R is NI) and N*(R)? = 0. Since N(R) # 0 we
can take 0 # ag € N(R). But (RagR)? = 0 and thus R is near-IFP. However
R 1s not IFP since R is non-abclian.

(2) There is an NI ring but not near-IFP. Let T be a reduced ring, n be
a positive integer and R, be the 27 by 2" upper triangular matrix ring over
T. Define a map 0 : R, = Rnt1 by A= (45 9Q), then R, can be considered
as a subring of R,.1 via o (i.e., A = o(4) for A € R,). Let R be the direct
limit of the direct system (R,,0;;), where ¢;; = ¢/~*. Then R is NI by [12,
Proposition 1.1}, and semiprime by [7, Corollary 1.3]. Note that N(R) is an
infinite subset of R, but RaR cannot contain any nonzero nilpotent ideal for
each 0 # a € N(R) since R is semiprime. Thus R is not near-IFP.

(3) There is a near-IFP ring but not NI. Let S = Z4, the ring of integers
modulo 4, and R = Mat,(S) for n > 2. Note (Mat,,(2Z4))° = 0. Let 0 £ A €
N(R). Since Mat,(27Z,) is the only nonzero proper ideal of R, RAR is either
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Mat,,(2Z4) (when A € Mat, (2Z4)) or R (when A € R\Mat,,(2Z,4)). Thus RAR
must contain Mat,,(2Z,4) and so R is near-IFP. However R is not NI as can be
seen by Fi9 + E21 ¢ N(R).

If given rings are semiprime then near-IFP rings are reduced as follows.

Proposition 1.4. Let R be a semiprime ring. Then the following conditions
are equivalent:

(1) R is near-1FP;

(2) R is IFP;

(3) R is reduced.

Proof. 1t suffices to show (1)=>(3). Let R be near-IFP and a?> = 0 fora € R. If
a # 0 then RaR contains a nonzero nilpotent ideal I of R since R is near-IFP;
but R is semiprime by hypothesis and so I = 0, a contradiction. Thus R is

reduced. O

When R is a semiprime ring we may conjecture that a ring R is NI if and
only if R is reduced, based on Proposition 1.4. However there is a semiprime
NI ring but not reduced as we see in Example 1.3(2).

The index of nilpotency of a subset I of a ring is the supremum of the indices
of nilpotency of all nilpotent elements in I. If such a supremum is finite, then
[ is said to be of bounded index of nilpotency.

Proposition 1.5. Let R be a semuprime ring of bounded index of nilpotency.
Then the following conditions are equivalent:

(1) R is near-1FP;

(2) R s IFP;

(3) R is reduced,

(4) R is NI
Proof. With the help of Proposition 1.4, it suffices to show (4)=(3) since
reduced rings are clearly NI. Let R be NI and assume N(R) # 0. Take
0 #a € N(R). Then RaR is a nonzero nil ideal of R. Since R is of bounded
index of nilpotency, RaR contains a nonzero nilpotent ideal, say J, by Levitzki

16, Lemma 1.1] or Klein [14, Lemma 5]. But R is semiprime and so J = 0, a
contradiction. Thus N(R) = 0. O

The condition “of bounded index of nilpotency” in Proposition 1.5 is not
superfluous by Example 1.3(2) (this ring is semiprime but not of bounded index
of nilpotency); while, the condition “semiprime” in Proposition 1.5 is also not
superfluous by Example 1.3(3) (this ring is of bounded index of nilpotency but
not semiprime).

A ring R is called von Neumann regular if for each a € R there exists
z € R such that a = aza. A ring is called right (resp. left) duo if every
right (resp. left) ideal is two-sided. Right or left duo rings are IFP by Lemma
1.1(1). Von Neumann regular rings need not be near-IFP in spite of being
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semiprime. Mat,(R) is von Neumann regular by [4, Lemma 1.6] over a von
Neumann regular ring R, but it is not near-IFP by Proposition 1.10(2) below
when n > 2. In the following we see some conditions under which von Neumann
regular rings can be near-1FP.

Proposition 1.6. Let R be a von Neumann reqular ring. Then the following
conditions are equivalent:

(1) R is right (left) duo:

(2) R is reduced,

(3) R is abelian;
(4) R is IFP;
(5) R is near-IFP:;
(6) R is NI.
Proof. The equivalences of the conditions (1), (2), and (3) are proved by [4,
Theorem 3.2]. The equivalences of the conditions (2), (4), and (5) are proved
by Proposition 1.4 since von Neumann regular rings are semiprime. (2)=>(6) is
obvious.

(6)=(2): Let R be NI and assume N(R) # 0. Take 0 # a € N(R). Since

R is von Neumann regular, there exists b € R such that a = aba. Then

we get a = aba = ababa = ababuba = ---. But N(R) is an ideal of R and
so ab € N(R); hence (ab)” = 0 for some positive integer n. This entails
0#£a=aba="---=(ab)"a = 0, a contradiction. Thus N(R) = 0. O]

A ring R is called strongly regular if for each a € R there exists z € R such
that ¢ = a?z. A ring is strongly regular if and only if it is abelian and von
Neumann regular [4, Theorem 3.5]. From Proposition 1.6 we obtain a similar

result to {4, Theorem 3.5].

Corollary 1.7. A ring is strongly regular if and only if it is near-IFP and von
Neumann reqular.

A ring R is called directly finite if ab = 1 implies ba = 1 for a,b € R. NI rings
are directly finite by [12, Proposition 2.7(1)]. Abelian rings are also directly
finite (hence so are IFP rings). For, if R is an abelian ring and a,b € R with
ab = 1, then baba = ba and so ba = baab = abab = 1. Thus from Proposition
1.6 one may conjecture that near-IFP rings are directly finite. However the
answer is negative by the following.

Example 1.8. Let F be a field and V be a vector space over F' with dimg(V) =
No. Set S = Homp(V,V). Take a = 3277, Ejiy1) and b= Y 57 E(j4p); in S.
Then ab = 1 but ba # 1 in S. Next let R = UTM,,(S5) for n > 2. Then R is
near-IFP by Proposition 1.10(1) below, but (aE)(bE) = E but (bE)(aFE) # E
in R, where F is the identity matrix in R. Thus R is not directly finite.

A ring R is called w-regular if for each a € R there exist a positive integer
n, depending on a, and b € R such that a” = a"ba"™. Von Neumann regular
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rings are obviously w-regular, and so one may ask if a w-regular ring is near-
IFP when it is abelian and semiprime, based on Proposition 1.6. However the
answer is negative by the following.

Example 1.9. Let S be a division ring. Consider the ring extension of S, that
is a subring of UTMs- (5),

D, = {M € UTM3~(S) | the diagonal entries of M are equal}.

Define a map o : D, = Dpyqy by A = (4 9), then D, can be considered as
a subring of D,4; via o (i.e., A = 0(A) for A € D,). Set R be the direct
limit of the direct system (D,,0;;) with o;; = ¢’~*. Then R is semiprime
by [5, Theorem 2.2(2)]. Every D,, is abelian by [9, Lemma 2] such that every
idempotent in D,, is of the form

with f2 = f € S. Thus R is also abelian. Every element of D, is either
invertible or nilpotent and therefore D,, is m-regular; hence R is also w-regular.
However R is not near-IFP by Proposition 1.4.

In the following proposition we see some criteria by which we examine the
near-IFPness of given rings.

Proposition 1.10. (1) For any ring S, UTM,,(S) and LTM,(S) are near-IFP
for n > 2.

(2) Mat,(S) over a semiprime ring S cannot be near-IFP for n > 2.

(3) Suppose that a ring S contains a nonzero nilpotent ideal I such that every
element in S\I is invertible. Then Mat,, (S) is near-IFP for any n.

Proof. (1) Let R = UTM,(S) forn > 2 and 0 # A = (a;;) € R with a, #
0. Then RE1;AE:,R = SagSFEy, is a nonzero nilpotent ideal of R that is
contained in RAR. Thus R is near-IFP. The proof of the case LTM,(S) is
similar.

(2) Let R = Mat,(S). Since n > 2 we have N(R) # 0. Thus R is not
near-1FP by Proposition 1.4.

(3) Let R = Mat,(S) and 0 # A = (a;;) € N(R). If every a;; is in I then
RAR is nilpotent because I is nilpotent. Otherwise we get RAR = R since
some a;; is invertible by hypothesis, hence RAR contains the nonzero nilpotent
ideal RMat,(I)R. O

We can apply Proposition 1.10(3) to Example 1.3(3). Z4 contains a nonzero
nilpotent ideal 2Z.4 such that 7Z4\2Z, is the subset of invertible elements in Z4.
Thus Mat,,(Z4) is near-IFP by Proposition 1.10(3).
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2. Structure and examples of (near-)IFP rings

Huh et al. showed that R[z] need not be IFP when R is an IFP ring [11,
Example 2]. But R[X] can be near-IFP over an IFP ring R as in the following.
The prime radical of a ring R is denoted by N.(R). Note N,(R) C N*(R) C
N(R) for any ring R.

Proposition 2.1. Let R be an IFP ring. Then ).,_, R[X]f:R[X] is nilpo-
tent whenever Y ., fiy' € R[X][y] is nilpotent, where f; € R[X] and y is an
indeterminate over R[X|; especially 3| X] is near-IFP.

Proof. Let R be an IFP ring Suppose that 0 # g(y) = Y.y fiy" € N(R[X][y])
with fi = a(i)o + 272, a(i); X (0)"» € R[X] for i = 0,1,...,n, where y is an
indeterminate over R[X]. \R can say fo # 0 after dividing g(y) by powers of y
if necessary. Note that there is a finite subset Xy of X such that f; € R[X] for
all i, say Xo = {z1,...,2.}. Then g(y) is nilpotent in R[zy,...,Z,,y]. Write
g(y) = g(z1,...,T0,Y).

By [17, Theorem 1.5] we have N,(R) = N*(R) = N(R) since R is IFP, and
so by [2, Proposition 2.6] we have N,(R[X]) = N*(R[X]) = N(R[X]). It is
well-konwn that N.(A[X]) = N.(A)[X] for any ring A. Consequently we get

N(R)[X] = N.(R[X]) = N*(R[X]) = N(R[X]). Applying this result we obtain
that every coefﬁcient fi is nilpotent in R[zy,...,x,], from g(z1,...,2Z,y) €
N(R[z1,...,%y,y]). Then by Lemma 1.1(4), we obtain that

Z Z Ra(i); R is nilpotent.

i=0 j=0

It then follows that

ZR If:iR X’CZR 0+ZK )R[X],

where K(i); = Ra(i);R. But }.7_ RIX](K(i)o + 27~ X(1))R[X] is
nilpotent and therefore >, R[X]f;R[X] is a,lqo mlpotent I’r is immediate
that R[X] is near-IFP. 0

G F(p™) means the Galois field of order p™. In the following an infinite direct
sum is considered as a ring without identity.

Proposition 2.2. (1) Every minimal noncommutative near-IFP ring is iso-
morphic to UTMy(GF(2)).

(2) The class of near-IFP rings is closed under direct sums and direct prod-
ucts.

Proof. (1) By [3, Proposition] a finite noncommutative ring R is isomorphic to
UTM,(GF(p)) when the order of R is p°, p a prime. Next by [3, Theorem] a
finite ring R of order m is commutative when m has a cube free factorization.
Thus every minimal noncommutative ring is isomorphic to UTMy (G F(2)). But
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UTM,(GF(2)) is near-IFP by Proposition 1.10(1), and hence every minimal
noncommutative near-IFP ring is isomorphic to UTMs(GF'(2)).

(2) Let R; be a near-IFP ring for i € I and R = ®,¢1R;. Take 0 # (a;) €
N(R). There are j = 1,...,n such that a;; # 0. Since each R; is near-IFP,
R;,a;; R;; contains a nonzero nilpotent ideal of R;,, say N;,. Put N = ®;c1N;
such that N; = 0 for ¢ # ¢;. Then clearly N is nilpotent and is contained in
R(az-)R.

Next let R = J],.; R; and 0 # (a;) € N(R). We can take a finite number
of a;’s, say a;; # 0 for j = 1,...,n. Then as above NNV is a nilpotent ideal of R
contained in R(a;)R. O

From Proposition 2.2(2) and the relation between direct sums and direct
products, one may suspect that the class of near-IFP rings may be closed
under subrings. However there exists a near-IFP ring whose subrings are non-
near-1FP as follows.

Example 2.3. Let S be a semiprime ring and 7" = Mat,,(S) for n > 2. Then
T is not near-IFP by Proposition 1.10(2). Next let R = UTM,(T) for n > 2.
Then R is near-IFP by Proposition 1.10(1) but the subring T" of R is not near-
IFP.

Proposition 2.4. For a ring R suppose that R/1I is a near-IFP ring for some
ideal I of R. If I is nilpotent then R is near-IFP.

Proof. Let 0 # a € N(R). If a € I then RaR is nilpotent and so we assume
a ¢ I. Write R = R/I and # = r +1I for r € R. Since R is near-IFP, RaR
contains a nonzero nilpotent ideal of R, say J/I with J* C I for some positive
integer k. But since [ is nilpotent, say I™ = 0 for some positive integer n, we
get J** = 0. Take 0 # b € J. Then there exists 0 # ¢ € RaR with ¢ —b € I,
and hence 0 # ¢ € J. Since J is nilpotent, RcR is a nonzero nilpotent ideal of
R contained in RaR. Thus R is near-IFP. []

Instead of the condition “I is nilpotent” in Proposition 2.4 we may consider
a weaker one “I is nil”. However this one cannot guarantee the near-IFPness
of R as we see in the following.

Example 2.5. Consider the ring R in Example 1.3(2). Let
I = {M € R| each diagonal entry of M is zero}.

Then I is a nil ideal of R such that R/I is reduced (hence near-IFP). But R is
not near-1FP.

Given rings A and B, suppose that 4Upg, gV4 are bimodules and
.UV =2 A, Yv: Ve, U— B
AU

are bimodule homomorphisms (called pairings). The array T = ({} §) can
be given the formal operations of 2 by 2 matrices, using 8 and ¢ in defining
multiplication. If 6, ¢ satisfy the associativity conditions required to make T
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a ring then the collection (A, B,U,V,8,v) is called a Morita contezt, and T is
called the ring of the Morita context. If 8,1 are zero then they are called zero
POITINGS.

Proposition 2.6. Suppose that T is the ring of a Morita context
(4,B,U,V.6,v)

with zero pairings.
(1) If A and B are near-IFP then so s T
(2) T is NI if and only if so are A and B.

Proof. (1) Let I = (£ &). Then [ is a nilpotent ideal of T' by the zero pairings.
Since £ 2 (4 9)~ A& B, T is near-IFP by Propositions 2.2(2) and 2.4.

(2) Since (9 Y) is a nilpotent ideal of T, we have N(T') = (N‘(/A) N%{B))

because 8, are zero pairings by the hypothesis. Note that N(T') is an ideal
of T if and only if N(A) and N(B) are ideals of A and B, respectively. The

proof is then complete. O

In Proposition 2.6(2) we have the isomorphisms

A
0
r o~ -]V(A) o A ' B
o P Bl (PR 02 I
N(B)

Proposition 2.6(1) can be applied to prove Proposition 1.10(1) when n = 2,
letting U = S and 1" = 0. But the converse of Proposition 2.6(1) need not hold
by the following.

Example 2.7. Let A = B = Mat,(Zg), where Zg is the ring of integers
modulo 6, and U = Mat,(2Zg), V' = Mat9(3Zg). Define (U ®p V) = UV and
WV ®4 U) = VU, then they are zero pairings. Let T be the ring of a Morita
context (A, B,U,V,0,v). Take 0 £ a = (533, ) € N(T). Then z,y € N(A). If
x=0=ythen a # 0 or 3 # 0 and so T'aT itself is a nonzero nilpotent ideal
of T. Assume z # 0. If © € A\V, then T'aT contains a nonzero nilpotent ideal

2 0
0()__044(23:)3__(){]
(0 (o 2))r= (0 4emm) (0 vy,

0 0
If x € A\U, then TaT contains a nonzero nilpotent ideal

0 0
0 0 0 0O
U YY) ofef = (B(3x)A o) = (V 0) '
0 3
The computation for the case of y # 0 is similar. However A, B are both not
near-IFP by Proposition 1.10(2) since Zg is semiprime.
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Over a reduced ring R the subring of Mats(R)

a b c
0 a d)|abec,deR
0 0 a

is an IFP ring by [13, Proposition 1.2]. In the following we see an IFP ring of
similar structure.

Proposition 2.8. Let R be a ring and suppose that I,J are ideals of R satis-
fying IJ =0=JI. If R s reduced then

a b c
e a d||a€Randb,c,d€ e, f,geJ
f g a
is an IFP ring.
Proof. Put
a b c
S = e a d]|a€Randbc,de€le f,geJ
f g a |
The addition and multiplication of
ax b]_ C1 a9 bg Co
A= €1 a dl y B = €2 a9 dg
i a fo 92 a2

in S can be rewritten by
(a1;bl,01,d1;€1,f1,91)+(G2;b2ac2ad25€2af2792)
— (a,l + a2;b1 +b2,C]_ +62,d1 +d2;€1 +627fl + f2591 +92)

and
(a1;b1,¢1,d1;€e1, fi1,91)(as; ba, co,da;ea, fa,92)

= (a102;a1b2 + biay,a1¢ + bidy + craz, a1ds + dyag;
e1a2 + aiez, fiaz + gie2 + a1 f2, 9102 + a1 92)
respectively. Now let AB = 0, then
(a1;b1,c1,d1;5 €1, f1,91)(az; b2, c2,d2; €2, f2,92) =0
and hence we have the following system of equations:
aras = 0
a1by + bras = 0,a1¢0 + b1ds + c1a2 = 0,a1ds + dias =0
eraz +ares =0, fias + grea + a1 fo =0,q1a2 +a1g2 = 0.

Reduced rings are IFP. So a; Ras = 0 and by the proof of {13, Proposition 1.2],
we have

aleg = blRag = alRCQ = bleg = ClRag = &1Rd2 = leag = 0.
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In a similar way to the case of the upper triangular part, we also get
elRag = a1R€2 = flRag = 91R82 — alng = glRag = a1R92 = (.

It is an immediate consequence that for any (r;s,t,u;x,y,2) € S we have

(a1;b1,c1,disex, f1,90)(rs s, t,u; 2.y, 2)(az; ba, c2, da; €2, fa, g2) = (a17az, arrba+
a18as + byras,a1rcs + a1 8dy + birds + artas + byuas + cyras, airds + ayuas +

diras) = 0.
Thus we get
a) bl C1 [ s a9 bg Co
€1 Qi d1 L r U €r Q9 dg =0
i 1 a y z r) \Jf: g2 a2
for any
r t
r r ul| €es;
Y r
hence S is IFP. N

Let R = Dy © D,y for domains D; and I = D; &0, J = 0& D,. Then
IJ =0 = JI and so by Proposition 2.8 we get an IFP ring

a b c
e a d]|ac€ Randb,c,de€le, figed
f g a

The converse of Proposition 2.8 need not hold as we see below. For that we
define a kind of subring of UTM,,(5)

D,(S) ={M € UTM,(S) | the diagonal entries of M are equal},
where S is a given ring.
Example 2.9. Let S be a commutative domain and
R=Dy(S)eSaS.

Take theideals I =0 5¢ 0, J=06008 5 of R, then clearly IJ =0 = JI.
Let

a b ¢
S = e a d]l|e€Randb,e,del,e fgeJ
f g a
and AB = 0, where
o3| b1 C1 9 bg Co
A= €1 aa d1 R B = €y Ao d'g
H o a fa g2 a2

are in S. Since R is commutative, K is IFP and hence we have a; Ras; = 0.
Notice that remaining computations are actually done in a reduced 0 S & S,
from the structure of [ and .J. Thus we can obtain the same result as in the
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proof of Proposition 2.8, i.e., ASB = 0, concluding that S is IFP. But R is not
reduced.

But, in Proposition 2.8, if (I = R, J = 0) or (I = 0, J = R) then R is
reduced by [5, Proposition 2.8] when S is IFP.

For a reduced ring R, D3(R) is an IFP ring by [13, Proposition 1.2}, but
D,(R) (n > 4) is not IFP by [13, Example 1.3]. For the near-IFP case we have
a different situation as in the following.

Proposition 2.10. D,(S) is a near-IFP ring for any ring S when n > 2.

Proof. Let R = D, (S) forn > 2 and 0 # A = (a;;) € R with a;; # 0. When
the diagonal of A is nonzero we have the nonzero nilpotent ideal RAE;, R =
Sa11SFE1, (C RAR) of R. So we assume that the diagonal of A is zero. Then
RAR itself is a nonzero nilpotent ideal of E. Thus R is near-IFP. O

A ring R is called right Ore if it has a classical right quotient ring. It is
well-known that semiprime right Goldie rings and right Noetherian domains
are both right Ore. But not every domain has a classical right quotient ring
(e.g., the free algebra in two indeterminates over a field). We denote the set of
all regular elements in a ring R by C(0).

Proposition 2.11. Let R be a right Ore ring and () be the classical right
quotient ring of R.

(1) Let R be an IFP ring. If a1b7'---anb;! = 0 for a;b;' € Q then
ay---a, = 0.

(2) Let R be an IFP ring. If 0 # ab™! € N(Q) then Qab™'Q contains a
nonzero nilpotent ideal of R.

Proof. (1) Put a1b7" - -a:b; ! = 0fora;b; ' € Q. Since R is right Ore, we have
the following computation: There exist ¢; € R, di € C(0) with asd), = bicy;
there exist ¢c; € R, dy € C(0) with asds = (bad;)ce; inductively there exist
Cn1 € R, dp—1 € C(0) with and,—1 = (bp—1d,—2)cn—_1; consequently we have
0= albl_l e a,z-bz-_l = @1Cy - 'Cn_ld;ilb;;l
and so a;j¢; ---¢,—1 = 0. But
0=aic; - Cho1 =ar1hicr - Cpo1 = arazdy - Cpt
= a1az(badi)c2 - - Cn1 = @r1G203d2 -+ Cp1 =

= aQg -~ an—l(bn—ldn—i’)cnﬂl = aiaz--- an—landn—l-

Since d,_1 is regular, we have aias - ap-1a, = 0.
(2) Let 0 # ab™! € N(Q), say (ab™')™ = 0. Then o™ = 0 by (1). Since R is
IFP, RaR is nilpotent by Lemma 1.1(4) such that

RaR C Qa@ = Qab™'bQ C Qab™1Q.
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