• 제목/요약/키워드: Hydrogen Refueling Tank

검색결과 16건 처리시간 0.028초

3차 상태방정식을 이용한 수소 충전 온도 거동 모사 (Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State)

  • 박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

수소 압축기 내장형 충전 탱크의 벨로우즈 강도 성능 향상을 위한 형상 설계 파라미터 연구 (Parametric Study of Shape Design for Strength Performance Enhancement of Bellows in Hydrogen Compressor-embedded Refueling Tank)

  • 김지형;송창용
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.39-46
    • /
    • 2024
  • As the development of hydrogen vehicles has accelerated in recent years, it is necessary to develop a storage tank for hydrogen fueling stations capable of high-pressure charging, and for this purpose, a new system with a compressor-embedded refueling tank is required. In this study, the parametric study of shape design based on strength performance evaluation was carried out to find the optimal shape design of bellows, the core component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 1,000 bar. The design factors for parametric study were contour shape and radius of bellows, and the performance factors were the maximum stress and the gap distance in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour radius is an appropriate design method to improve the compression performance and structural safety.

캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석 (Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System)

  • 심규석;박병흥
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.

수소압축기 내장 충전탱크용 벨로우즈의 형상 파라미터 변화에 따른 구조 성능 고찰 (Study on Structural Performance by Shape Parameter Variation of Bellows for the Hydrogen Compressor-embedded Refueling Tank)

  • 박우창;정민석;송창용
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, design parameter exploration based on finite element analysis was performed to find the optimal shape of bellows, the key component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 900 bar. In the design parametric study, the design variables took into account the bellows shapes such as contour radius and span spacing, and the response factors were set to the maximum stress and the gap in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour span is an appropriate design method to improve the compression performance and structural safety. From the selection of optimal design, the maximum stress was reduced to 49% compared to the initial design without exceeding the material yield stress.

모델링 및 시뮬레이션을 통한 수소충전 프로토콜 영향인자 평가 (Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation)

  • 채충근;강수연;김한나;채승빈;김용규
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.513-522
    • /
    • 2019
  • It is not easy to refuel quickly and safely with 70 MPa hydrogen. This is because the temperature in the vehicle tank rises sharply due to Joule-Thomson effect, etc. Thus protocols such as SAE J2601 in the United States and JPEC-S 0003 in Japan were established. However, they have the problem of over-complexity and lack of versatility by setting the preconditions for hot and cold cases and introducing a number of look-up tables. This study was conducted with the ultimate goal of developing new protocols based on complete real-time communication. Thermodynamic models were made and programs were developed for hydrogen refueling simulations. Simulation results confirmed that there are five parameters in the influencing factors of the hydrogen refueling protocol.

정량적 위험성 평가를 통한 고속도로 휴게소 수소 충전소 안전 가이드라인 연구 (A Study on Safety Guidelines for Hydrogen Refueling Stations at Expressway Service Area using Quantitative Risk Assessment)

  • 김희진;장경민;김수현;김기범;정은상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.551-564
    • /
    • 2021
  • The use of clean energy based on the hydrogen economy is increasing rapidly due to the greenhouse gas reduction policies and the increase in the need for hydrogen. Currently, South Korea government have been considering a plan to construct hydrogen refueling stations at expressway service area for the purpose of supplying hydrogen vehicles. In the case of a hydrogen refueling stations, a quantitative risk assessment (QRA) must be performed because it includs and uses a high pressurized hydrogen storage tank. In this study, QRA was conducted using societal risk and F-N curve by the consequence assessment (CA) of jet fire and explosion according to the population density, capacity of the high pressurized hydrogen storage tank and frequency assessment (FA) data to the general hydrogen refueling stations systems in expressway service area. In the cases of jet with a leak diameter of 7.16 mm, regardless of expressway service area location, the societal risk was over 1E-04 that was acceptable for as Low As reasonably practicable (ALARP) region (workforce), but unacceptable for ALARP region (public). In the cases of gas explosion, all expressway service area satisfy ALARP region. In the case of the population density is over 0.0727, QRA for constructing the hydrogen refueling stations, must be conducted.

고압 수소 충전 시스템에 대한 실험 및 수치해석 (Experimental and Numerical Study on the Hydrogen Refueling Process)

  • 이택홍;김명진;박종기
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.342-347
    • /
    • 2007
  • The research on production and application of hydrogen as an alternative energy in the future is being carried out actively. It hydrogen storage is necessary in order that user use hydrogen economically without much difficulty. Among the ways of hydrogen storage the method which is compressed hydrogen gas by high pressure is easier for application than other methods. In this study, we have been calculated gas with changing pressure and temperature variation of container wall through applied to mass and energy balance equation when compressing hydrogen by high pressure, and also to Beattie-Bridgeman equation of state for the kinetic of hydrogen. We will apply above date as a preliminary for design of hydrogen storage tank.

수소자동차의 연료주입라인용 Check Valve 내의 유동해석 (Flow Analysis of Check Valve for Hydrogen Vehicle Refueling Line)

  • 박경택;여경모;박태조;강병루
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.565-568
    • /
    • 2007
  • The high pressure hydrogen gas refueling system is required for fuel cell vehicle. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is adopted to investigate the gas flow characteristics inside the check valve for various refueling and tank pressures. The results showed that the choking phenomena can occur for certain refueling pressures, therefore refueling processes should be divided by multiple stages. And a design method to prevent the seal departure problem which reported in CNG usages is required.

  • PDF

HCNG 가스공급을 위한 고압혼합 충전방안 (High Pressure Refueling Method for HCNG Gas Supply)

  • 김상민;이중성;한정옥;이영철;김용철;채정민;홍성호
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.25-30
    • /
    • 2014
  • 수소와 압축천연가스의 혼합연료 HCNG의 가스공급 및 충전을 위해 혼합장치 제작 및 충전실험을 수행하였다. 비율제어방식 개념으로 수소와 압축천연가스는 30 : 70의 비율로 혼합된다. HCNG 충전방법으로는 탱크의 압력을 이용하여 충전할 수 있는 FULL충전, 일정량을 충전할 수 있는 정량충전 방식이 있다. Full충전과 정량충전 결과 모두 혼합비율 30 : 70에 오차 제한범위인 수소$30{\pm}2%$ 조건을 만족시켰다. 탱크에 충전된 HCNG의 조성을 Gas Chromatography로 분석한 결과도 오차제한범위를 만족시켜 충전탱크에서도 30 : 70의 비율을 확인하였다.

Type 2 고압용기 권선용 금속선재에 관한 연구 (A Study on the Metal Wire for Hoop Wrapping of Type 2 High Pressure Tank)

  • 한진목;최수광;이성희;조경철;황철민;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.338-346
    • /
    • 2019
  • During last years, hydrogen refueling infrastructure test and devices research for hydrogen station presented a significant growth consisting of the commercialization of fuel cell electric vehicles (FCEVs). However, we still have many challenges for making commercial hydrogen stations such as increased safety and cost reduction. This study demonstrates the low cost hydrogen storage tank (type 2) and effective winding method for high pressure hydrogen storage. We use numerical analysis to verify stress changes inside the wire according to the winding condition. Also liner size, winding wire size and wire tension were studied for the safety and cost down. Results show that the stress of winding wire decreased with increased winding angle and increased the liner diameter. On the other hand, the stress of winding wire increased according to the increased wire thickness and tension.